Skip to main content
Log in

Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4 - EPSPS . The transformants could tolerate up to 1 % commercial glyphosate and has the potential to be used for DSR (direct-seeded rice).

Abstract

Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T 0, T 1 and T 2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1 % of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher D, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Sinch BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 139–145

    Google Scholar 

  • Bouman BAM, Lampayan RM, Tuong TP (2007) Water management in irrigated rice: coping with water scarcity. International Rice Research Institute, Los Baños

    Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Reddy GM, Singh J, Vani K, Vijayalakshmi M, Kaul T, Reddy MK (2014) Development of transgenic rice harbouring mutated rice 5-enolpyruvylshikimate 3-phosphate synthase (Os-mEPSPS) and Allium sativum Leaf Agglutinin (ASAL) genes conferring tolerance to herbicides and sap-sucking insects. Plant Mol Biol Rep 32:1146–1157

  • Charng YC, Li KT, Tai HK, Lin NS, Tu J (2008) An inducible transposon system to terminate the function of a selectable marker in transgenic plants. Mol Breeding 21:359–368

    Article  CAS  Google Scholar 

  • Comai LD, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744

    Article  CAS  Google Scholar 

  • De Rocher EJ, Vargo-Gogola TC, Diehn SH, Green PJ (1998) Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol 117:1445–1461

    Article  PubMed Central  PubMed  Google Scholar 

  • Della-Cioppa G, Bauer SC, Klein BK, Shah DM, Fraley RT, Kishore GM (1986) Translocation of the precursor of 5-enolpyruvylshikimate 3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci USA 83:6873–6877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Depicker A, Van Montagu M (1997) Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9:373–382

    Article  PubMed  Google Scholar 

  • Farooq M, Siddique KHM, Rehman H, Aziz T, Lee D, Wahid A (2011) Rice direct seeding: experiences, challenges and opportunities. Soil Tillage Res 111:87–98

    Article  Google Scholar 

  • Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E (2006) Molecular basis for the herbicide resistance of roundup ready crops. Proc Natl Acad Sci USA 103:13010–13015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitr Cell Dev Biol Plant 12:473–478

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SLA, Warketin TD, Delong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  CAS  PubMed  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucl Acids Res 16:9877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • IRRI (International Rice Research Institute) (2006) Direct seeded rice: a low cost establishment technology. IRRI Rice factsheet. Available at http://www.narc.org.np/rice_knowledge_bank/factsheet/rice.pdf

  • James C (2013) Global status of commercialized biotech, GM crops: 2013. ISAAA Brief No 35. International Service for the Acquisition of Agri-Biotech Applications, Ithaca

    Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase co suppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  CAS  PubMed  Google Scholar 

  • Joshi E, Kumar D, Lal B, Nepalia V, Gautam P, Vyas AK (2013) Management of direct seeded rice for enhanced resource-use efficiency. Plant Knowledge Journal 2:119–134

    Google Scholar 

  • Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kishore GM, Brundage L, Kolk K, Padgette SR, Rochester D, Huynh QK, Della-Cioppa G (1986) Isolation, purification and characterization of a glyphosate tolerant mutant E. coli EPSP synthase. Proc Fed Am Soc Exp Biol 45:1506

    Google Scholar 

  • Kishore GM, Padgette SR, Fraley RT (1992) History of herbicide tolerant crops, methods of development and current state of the art-emphasis on glyphosate tolerance. Weed Technol 6:626–634

    CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL, Howard JA (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484

    Article  CAS  PubMed  Google Scholar 

  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    Article  CAS  PubMed  Google Scholar 

  • Maqbool SB, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breeding 5:471–480

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray EE, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M (1991) Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol 16:1035–1050

    Article  CAS  PubMed  Google Scholar 

  • Padgette SR, Re DB, Gasser CS, Eichholtz DA, Frazier RB, Hironaka CM, Levine EB, Shah DM, Fraley RT, Kishore GM (1991) Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimic acid-3-phosphate synthase active site. J Biol Chem 266:22361–22369

    Google Scholar 

  • Padgette SR, Re DB, Berry GF, Eichholtz DE, Delannay X, Fuchs RL, Kishore GM, Fraley RT (1996) New weed control opportunities: development of soybeans with a Roundup Ready gene. In: Duke SO (ed) Herbicide-resistant crops: agricultural, economic, environmental, regulatory and technological aspects. CRC Press, Boca Raton, pp 53–84

    Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey G, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Quinn JP (1990) Evolving strategies for the genetic engineering of herbicide resistance in plants. Biotechnol Adv 8:321–333

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double total crop production by 2050. PLoS ONE. doi:10.1371/journal.pone.0066428

    Google Scholar 

  • Reddy MS, Dinkins RD, Collins GB (2003) Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21:676–683

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Singh S, Singh G, Singh VP, Singh AP (2005) Effect of establishment methods and weed management practices on weeds and rice in rice-wheat cropping system. Indian J Weed Sci 37:51–57

    Google Scholar 

  • Stalker DM, Hiatt WR, Comai LD (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase confers resistance to herbicide glyphosate. J Biol Chem 260:4724–4728

    CAS  PubMed  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  Google Scholar 

  • Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402

    Article  Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Lin CH, Shen ZC (2011) Development of transgenic glyphosate resistant rice with G6 gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Agr Sci China 10(9):1307–1312

    Article  CAS  Google Scholar 

  • Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163

    CAS  PubMed  Google Scholar 

  • Zhou M, Xu H, Wei X, Ye Z, Wei L, Gong W, Wang Y, Zhu Z (2006) Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy. Plant Physiol 140:184–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Nuziveedu Seeds Limited (NSL), Hyderabad for providing financial assistance. We acknowledge the help of Dr Vikrant Nain for codon optimization of mCP4-EPSPS gene. We are also thankful to our colleagues Hari Kishore CM and Shruti Yadava for help.

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polumetla Ananda Kumar.

Additional information

Communicated by Manoj Prasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1732_MOESM1_ESM.jpg

Supplementary Fig. 1: mCP4-EPSPS gene-specific PCR analysis of putative T 0 transgenic rice plant. M: 1-kb ladder, W: Water control; UC: Untransformed control plant; Lanes 1-15: Putative transgenic plants; PC: Binary plasmid control. (JPEG 13 kb)

299_2014_1732_MOESM2_ESM.jpg

Supplementary Fig. 2: Immunostrip analysis of T 0 CP4-EPSPS transgenic rice. UC; Untransformed control plant, Lane 1 to 15; T 0 putative transgenic plants (JPEG 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhapekar, S., Raghavendrarao, S., Pavan, G. et al. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Rep 34, 721–731 (2015). https://doi.org/10.1007/s00299-014-1732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1732-2

Keywords

Navigation