Skip to main content
Log in

GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A FRUITFULL homolog GmFULa was cloned and found to play roles in the flowering and maturation of soybean.

Abstract

Soybean varieties exhibit great diversity in terms of flowering and maturation due to differences in their photoperiodic responses. The underlying mechanism remains unclear despite the fact that some upstream flowering genes have been studied. FRUITFULL (FUL) genes are one group of downstream flowering genes known to have major roles in reproductive transition, floral meristem identity, and floral organ identity. However, FUL homologs and their functions are poorly understood in soybean. Here, a soybean FUL homolog was cloned from the late-maturing photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and designated GmFULa. In ZGDD, GmFULa exhibited a terminal-preferential expression pattern, with higher expression in the root and shoot apices than in the middle parts. Diurnal rhythm analysis revealed that photoperiod regulates the GmFULa expression level but does not alter its diurnal rhythm. ZGDD was maintained under different photoperiod conditions (long day, LD; short day, SD; LD after 13 short days, SD13-LD) to assess GmFULa expression in newly expanded leaves and in the shoot apex. From this analysis, GmFULa expression was detected in the floral meristem, floral organs and their primordia; trifoliate leaves; and the inflorescence meristem, with the expression levels induced by SD and inhibited by LD. GmFULa expression was also associated with maturity in seven soybean varieties with different photoperiod sensitivities. Therefore, photoperiod conditions affect the expression level of GmFULa but not its diurnal rhythm. The gene plays pleiotropic roles in reproductive transition, flowering, and leaf development and is associated with maturity in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FUL:

FRUITFULL

CDS:

Coding sequence

LD:

Long day

SD:

Short day

AP1:

APETALA1

ZGDD:

Zigongdongdou

HH27:

Heihe 27

References

  • Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto PB, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24:4437–4451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benlloch R, D’Erfurth I, Ferrandiz C, Cosson V, Beltran JP, Canas LA, Kondorosi A, Madueno F, Ratet P (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berbel A, Navarro C, Ferrandiz C, Canas LA, Madueno F, Beltran JP (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451

    Article  CAS  PubMed  Google Scholar 

  • Berbel A, Ferrandiz C, Hecht V, Dalmais M, Lund OS, Sussmilch FC, Taylor SA, Bendahmane A, Ellis TH, Beltran JP, Weller JL, Madueno F (2012) VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Commun 3:797

    Article  PubMed  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. Plant Cell 25:2070–2083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226:369–380

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Huang F, Liu H, Yang S, Yu D (2011) An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168:2251–2259

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147:2054–2069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dreni L, Kater MM (2013) MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol

  • Fei Z, Jia Z, Leng J, Zhang B, Wu C (2009) Identification of photoperiodic responses of different soybean ecotypes. Crops, pp 46–49

  • Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gocal GF, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    CAS  PubMed  Google Scholar 

  • Hao G, Chen X, Pu M (1992) Maturity groups of soybean cultivars in China. Acta Agron Sin 18:275–281

    Google Scholar 

  • Hartwig EE (1970) Growth and reproductive characteristics of soybeans (Glycine max (L.) Merr.) grown under short-day conditions. Trop Sci 12:47–53

    Google Scholar 

  • Huang G, Ma J, Han Y, Chen X, Fu Y (2011) Cloning and expression analysis of the soybean CO-like gene GmCOL9. Plant Mol Biol Rep 29:352–359

    Article  CAS  Google Scholar 

  • Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, Hohtola A, Haggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Z, Wu CX, Wang M, Sun HB, Hou WS, Jiang BJ, Han TF (2011) Effects of leaf number of stock or scion in graft union on scion growth and development of soybean. Acta Agron Sin, pp 650–660

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang Y, Han YZ, Zhang XM (2011) Expression profiles of a CONSTANS homologue GmCOL11 in Glycine max. Russ J Plant Physiol 58:928–935

    Article  CAS  Google Scholar 

  • Jiang B, Yue Y, Gao Y, Ma L, Sun S, Wu C, Hou W, Lam H, Han T (2013) GmFT2a polymorphism and maturity diversity in soybeans. PLoS One 8:e77474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung J, Ju Y, Seo PJ, Lee J, Park C (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69:577–588

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Liu B, Xia Z, Sato S, Kim B, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154(3):1220–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8:13–18

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Litt A (2007) An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168:73–91

    Article  CAS  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Ma J, Han Y, Chen X, Fu YF (2011) The isolation and analysis of a soybean CO homologue GmCOL10. Russ J Plant Physiol 58:330–336

    Article  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • McGarry RC, Kragler F (2013) Phloem-mobile signals affecting flowers: applications for crop breeding. Trends Plant Sci 18:198–206

    Article  CAS  PubMed  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  CAS  PubMed  Google Scholar 

  • Muller BM, Saedler H, Zachgo S (2001) The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J 28:169–179

    Article  CAS  PubMed  Google Scholar 

  • Pabon-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158:1685–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preston JC, Kellogg EA (2008) Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol 146:265–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sather DN, Golenberg EM (2009) Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Planta 229:507–521

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T (2011) GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One 6:e29238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G (1981) The research about the ecological division of soybean cultivars in China. Sci Agri Sin 39–46

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:260–395

    Article  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Wong CE, Singh MB, Bhalla PL (2013) Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. BMC Plant Biol 13:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu C, Ma Q, Yam KM, Cheung MY, Xu Y, Han T, Lam HM, Chong K (2006) In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean [Glycine max (L.) Merr.] flowering reversion system. Planta 223:725–735

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu YY, Chong K, Xu ZH, Tan KH (2002) The practical technique of in situ hybridization with RNA probe. Chin Bull Bot 19:234–238

    Google Scholar 

  • Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99:16336–16341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang LX, Kyei-Boahen S, Zhang J, Zhang MH, Freeland TB, Watson Jr CE, Liu XM (2007) Modifications of optimum adaptation zones for soybean maturity groups in the USA. Crop Manag. doi:10.1094/CM-2007-0927-01-RS

  • Zhang Q, Ma J, Chen X, Fu Y (2010) Cloning and analysis of GmCOL4 gene in Glycine max. Acta Agron Sin 36:539–548

    CAS  Google Scholar 

  • Zhang W, Fan S, Pang C, Wei H, Ma J, Song M, Yu S (2013) Molecular cloning and function analysis of two SQUAMOSA-like MADS-box genes from Gossypium hirsutum L. J Integr Plant Biol 55(7):597–607

Download references

Acknowledgments

This work was supported by the China Agriculture Research System (CARS-04), the National Natural Science Foundation of China (http://www.nsfc.gov.cn; Grant No. 30070456 and 30471054) and the Chinese Academy of Agricultural Sciences (CAAS) Innovation Project.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfu Han.

Additional information

Communicated by Renate Schmidt.

Z. Jia and B. Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1693_MOESM1_ESM.tif

Additional file 1 - Figure S1. GmFULa DNA and protein sequences. Non-bold, GmFULa DNA sequence; bold, GmFULa protein sequence; yellow, GmFULa coding sequence; red, the conserved C-terminal motif of euFUL and FUL-like proteins. (TIFF 1016 kb)

Additional file 2 - Figure S2. GmFULa domains and alignment (TIFF 1298 kb)

Additional file 3 - Figure S3. GmFULa expression in soybean variety Heihe 27 (TIFF 795 kb)

299_2014_1693_MOESM4_ESM.tif

Additional file 4 - Figure S4. GmFULa expression in the shoot apices of different soybean varieties under short-day conditions by in situ hybridization. (a)-(c) Shoot apices of soybean variety Heihe 27. (d)-(f) Shoot apices of soybean variety Edou 4. (g)-(i) Shoot apices of soybean variety Jilin 30. (j)-(l) Shoot apices of soybean variety Jindou 19. (m)-(o) Shoot apices of soybean variety Dian 86-5. (p)-(r) Shoot apices of soybean variety Huaxia 1. SD5, SD10, and SD15 indicate 5, 10, and 15 short days, respectively. am, apical meristem; axm, axillary meristem; br, bract; c, carpel; fm, floral meristem; fp, floral primordium; im, inflorescence meristem; ip, inflorescence primordium; le, leaf/trifoliate leaf; p, pistil; pe, petal; pep, petal primordium; pp, pistil primordium; rf, reversed flower; s, stamen; se, sepal; sep, sepal primordium; sp, stamen primordium; tlp, trifoliate leaf primordium. Bar, 250 μM (TIFF 10444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Jiang, B., Gao, X. et al. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. Plant Cell Rep 34, 121–132 (2015). https://doi.org/10.1007/s00299-014-1693-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1693-5

Keywords

Navigation