Skip to main content
Log in

Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Using microarray analysis, we identified regulatory and signaling-related genes with differential expression in three genotypes with varying degrees of salt tolerance, Triticum aestivum , the amphiploid, and the wheat substitution line DS3E(3A).

Abstract

Lophopyrum elongatum is among one of the most salt-tolerant members of the Triticeae; important genetic stocks developed from crosses between wheat and L. elongatum provide a unique opportunity to compare gene expression in response to salt stress between these highly related species. The octaploid amphiploid contains the entire genome of T. aestivum and L. elongatum, and the disomic substitution line DS3E(3A) has chromosome 3A of wheat replaced by chromosome 3E of L. elongatum. In this study, microarray analysis was used to characterize gene expression profiles in the roots of three genotypes, Triticum aestivum, the octaploid amphiploid, and the wheat DS3E(3A) substitution line, in response to salt stress. We first examined changes in gene expression in wheat over a time course of 3 days of salt stress, and then compared changes in gene expression in wheat, the T. aestivum × L. elongatum amphiploid, and in the DS3E(3A) substitution line after 3 days of salt stress. In the time course experiment, 237 genes had 1.5 fold or greater change at least one out of three time points assayed in the experiment. The comparison between the three genotypes revealed 304 genes with significant differences in changes of expression between the genotypes. Forty-two of these genes had at least a twofold change in expression in response to salt treatment; 18 of these genes have signaling or regulatory function. Genes with significant differences in induction or repression between genotypes included transcription factors, protein kinases, ubiquitin ligases and genes related to phospholipid signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4:8. doi:10.3389/fpls.2013.00008

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahn C, Park U, Park PB (2011) Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 415(4):669–674. doi:10.1016/j.bbrc.2011.10.134 (Epub 2011 Nov 6)

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehmia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulator y network controlled by NAC transcription factor ANACO92/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62(2):250–264. doi:10.1111/j.1365-313X.2010.04151

    Article  CAS  PubMed  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810. doi:10.1038/sj.cr.7290349

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57(5):1059–1078. doi:10.1093/jxb/erj124

    Article  CAS  PubMed  Google Scholar 

  • Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol 50:986–997. doi:10.1093/pcp/pcp051

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30(4):497–507

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crepsi M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680. doi:10.1105/tpc.108.059576

    Article  PubMed Central  PubMed  Google Scholar 

  • Dvořák J, Ross K (1986) Expression of tolerance of Na+, K+, Mg2+, Cl, and SO4 2− ions and seawater in the amphiploid of Triticum aestivum ×Elytrigia elongata. Crop Sci 26:658–660

    Article  Google Scholar 

  • Dvořák J, Edge M, Ross K (1988) On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proc Natl Acad Sci 85:3805–3809

    Article  PubMed  Google Scholar 

  • Galvez AF, Gulick PJ, Dvořák J (1993) Characterization of the early stages of genetic salt-stress responses in salt tolerant Lophopyrum elongatum, salt-sensitive wheat and their amphiploid. Plant Physiol 103:257–265. doi:10.1104/pp.103.1.257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gentleman R, Carey VJ, Bates DM, Bolstad B, Dettling M et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. doi:10.1186/gb-2004-5-10-r80

    Article  PubMed Central  PubMed  Google Scholar 

  • Giacomelli JI, Rubichich KF, Dezar CA, Chan RI (2010) Expression analysis indicate the involvement of sunflower WRKY transcription factors in stress responses and phylogenetic reconstructions reveal the existence of a novel clade in Asteraceae. Plant Sci 178:398–410. doi:10.1016/j.plantsci.2010.02.008

    Article  CAS  Google Scholar 

  • Gulick PJ, Dvořák J (1987) Gene induction and repression by salt treatment in roots of salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring × Elytrigia elongata amphiploid. Proc Natl Acad Sci 84:99–103. doi:10.1073/pnas.84.1.99

    Article  CAS  PubMed  Google Scholar 

  • Haffani ZY, Silva FN, Goring RD (2004) Receptor kinase signaling in plants. Can J Bot 82:1–15. doi:10.1139/B03-126

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, p 510

    Google Scholar 

  • Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212. doi:10.1104/pp.113.4.1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149–170. doi:10.1186/1471-2164-7-149

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsieh EJ, Cheng MC, Lin TP (2013) Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol 82(3):223–237. doi:10.1007/s11103-013-0054-z (Epub 2013 Apr 28)

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt and drought stresses in plants. Mol Biol Rep 39:969–987. doi:10.1007/s11033-011-0823-1

    Article  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906. doi:10.1105/tpc.13.4.889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141. doi:10.1104/pp.008532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31(3):201–208. doi:10.1007/s10059-011-0031-9

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57(5):1097–1107. doi:10.1093/jxb/erj098

    Article  CAS  PubMed  Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12(12):534–540

    Article  PubMed  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Farajalla MR, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64(4):409–423. doi:10.1007/s11103-007-9161-2

    Article  CAS  PubMed  Google Scholar 

  • Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H et al (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 68:639–650. doi:10.1101/gr.1113003

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(651):681. doi:10.1146/annurev.arplant.59.032607.092911

    Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity responsive gene expression. Plant Mol Biol 42:657–665. doi:10.1023/A:1006321900483

    Article  CAS  PubMed  Google Scholar 

  • Omeilian JA, Epstein E, Dvořák J (1991) Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34:961–974. doi:10.1139/g91-149

    Article  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress responsive genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58(3):507–520. doi:10.1093/jxb/er/258

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Q, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSLK1 improves drought and salt stress in rice (Oryza sativa) plants. Plant J 62(2):316–329. doi:10.1111/j.1365313X.2010.04146.x

    Article  CAS  PubMed  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57(5):1181–1199

    Article  CAS  PubMed  Google Scholar 

  • Pastuglia M, Swarup R, Rocher A, Saindrenan P, Roby D, Dumas C, Cock JM (2002) Comparison of the expression patterns of two small gene families of Sgene family receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene 282:215–225. doi:10.1016/S0378-1119(01)00821-6

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NL, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed  Google Scholar 

  • Rahaie M, Xue GP, Naghavi MR, Alizadeh H, Schenk PM (2010) A Myb gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep 29(8):835–844. doi:10.1007/s00299-010-0868-y

    Article  CAS  PubMed  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249. doi:10.1111/j.1365-3040.2008.01916.x

    Article  CAS  PubMed  Google Scholar 

  • Ridha Farajalla M, Gulick P (2007) Members of the α-tubulin gene family in wheat (Triticum aestivum L.) have differential expression during cold acclimation. Genome 50:502–510. doi:10.1139/G07.027

    Article  PubMed  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes AP, Damatta FM, Baracat-Pereira MC, Fontes EP (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57(9):1909–1918 Epub 2006 Apr 4

    Article  CAS  PubMed  Google Scholar 

  • Rodriquez-Uribe L, Higbie SM, Stewart JM, Wilkins T, Lindeman W, Sengupta-Gopalan C, Zhang J (2011) Identification of salt responsive genes using comparative microarray analysis in upland cotton(Gossypium hirsutum L.). Plant Sci 180(3):461–469. doi:10.1016/j.plantsci.2010.10.009

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327. doi:10.1046/j.1365-313x.2000.00787.x

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Bloom AJ, Dvořák J (1989) Salt-tolerant Tritcum × Lophopyrum derivatives limit the accumulation of sodium and chloride ions under saline-stress. Plant Cell Environ 12:47–55. doi:10.1111/j.1365-3040.1989.tb01915.x

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Cell 31(3):279–292. doi:10.1046/j.1365-313X.2002.01359.x

    CAS  Google Scholar 

  • Seki M, Satou M, Sakurai T, Akiyama K, Iida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55(395):213–223 (Epub 2003 Dec 12)

    Article  CAS  PubMed  Google Scholar 

  • Silva NF, Goring DR (2002) The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol 50:667–685

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135(3):1697–1709. doi:10.1104/pp104.039909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) The response of barley to salinity stress differs between hydroponic and soil systems. Funct Plant Biol 37(7):621–633

    Article  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52:873–891. doi:10.1023/A:1025029026375

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang W, Li W, Mishra G (2007) Phospholipid signaling in plant response to drought and salt stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 183–192

    Chapter  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557. doi:10.1093/jxb/erp198

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell Signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. doi:10.1105/tpc.000596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao D, Zhang X, Zhao X, Lui C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98(1):47–55. doi:10.1016/j-ygeno.2011.04.007

    CAS  PubMed  Google Scholar 

  • Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5(5):1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wei S, Boone B, Levy S (2007) Microarray analysis of genes affected by salt stress in tomato. Afr J Environ Sci Technol 1(2):14–26

    Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Natural Science and Engineering Research Council of Canada, Genome Canada and Genome Quebec. We thank Jan Dvořák, University of California at Davis, for kindly providing the T. aestivum × L. elongatum amphiploid and the 3E(3A) chromosome substitution line.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Gulick.

Additional information

Communicated by M. Jordan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussein, Z., Dryanova, A., Maret, D. et al. Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum . Plant Cell Rep 33, 189–201 (2014). https://doi.org/10.1007/s00299-013-1522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1522-2

Keywords

Navigation