Skip to main content
Log in

The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arndt FJ, Rusch R, Stilfried HV (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:99

    Google Scholar 

  • Banasr M, Hery M, Brezun JM, Daszuta A (2001) Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci 14:1417–1424

    Article  PubMed  CAS  Google Scholar 

  • Buznikov GA, Shumkler YB (1981) Possible role of pre-nervous neurotransmitters in cellular interactions of early embryogenesis—a hypothesis. Neurochem Res 6:55–68

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1134:333–337

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Huo Y, Tan D-X, Liang Z, Zhang WB, Zhang YK (2003) Melatonin in Chinese medicinal herbs. Life Sci 73:19–26

    Article  PubMed  CAS  Google Scholar 

  • Ferrante J, Luchowski E, Rutledge A, Tringgle DJ (1989) Binding of a 1,4-dihydropyridine calcium channel activator, (−)S-Bay K8644 to cardiac preparations. Biochem Biophys Res Commun 158:149–154

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 38:313–316

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    Article  PubMed  CAS  Google Scholar 

  • Hosseini-Nasr M, Rashid A (2002) Thidiazuron-induced shoot-bud formation on root segments of Albizzia julibrissin is an apex-controlled, light-independent and calcium-mediated response. Plant Growth Regul 36:81–85

    Article  CAS  Google Scholar 

  • Hutchinson MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium × hortorum Bailey). J Plant Physiol 149:573–579

    CAS  Google Scholar 

  • Jain P, Rashid A (2001) Stimulation of shoot regeneration on Linum hypocotyl segments by thidiazuron and its response to light and calcium. Biol Plant 44(4):611–613

    Article  CAS  Google Scholar 

  • Jones MPA, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19

    Article  PubMed  CAS  Google Scholar 

  • Kolar J, Machackova I (2005) Melatonin in higher plants: occurrence and possible functions. J Pineal Res 39:333–341

    Article  PubMed  CAS  Google Scholar 

  • Milne A, Beamish T (1999) Inhalation and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can J Anaesth 46:287–289

    PubMed  CAS  Google Scholar 

  • Mundhara R, Rashid A (2002) Stimulation of shoot-bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium, cytokinin and thidiazuron. Plant Sci 162:211–214

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2006) TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci 170:185–190

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (1997) Modulation of mineral and fatty acid profiles during thidiazuron mediated somatic embryogenesis in peanuts (Arachis hypogaea L.). J Plant Physiol 151:358–361

    CAS  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium × hortorum Bailey. Plant Growth Regul 35(3):269–275

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–537

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2005) Role of indoleamines in regulation of morphogenesis in in vitro cultures of St. John’s wort (Hypericum perforatum L.). Acta Hortic 629:XXVI International horticultural congress: The future for medicinal and aromatic plants

  • Murch SJ, KrishnaRaj S, Saxena PK (1997a) Thidiazuron-induced morphogenesis of regal geranium (Pelargonium domesticum): a potential stress response. Physiol Plant 101:183–191

    Article  CAS  Google Scholar 

  • Murch SJ, Simmons CB, Saxena PK (1997b) Melatonin in feverfew and other medicinal plants. Lancet 350:1598–1599

    Article  PubMed  CAS  Google Scholar 

  • Murch SJ, Victor JMR, KrishnaRaj S, Saxena PK (1999) The role of proline in thidiazuron-induced somatic embryogenesis of peanuts. In Vitro Cell Dev Biol Plant 35:102–105

    CAS  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  Google Scholar 

  • Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro cultured explants of St. John's wort (Hypericum perforatum L.). In Vitro Cell Dev Biol 37:786–793

    Article  CAS  Google Scholar 

  • Murch SJ, Victor JMR, Saxena PK (2003) Auxin, calcium and sodium in somatic embryogenesis of African violet (Saintpaulia ionantha Wendl. Cv. Benjamin). Acta Hortic 625:XXVI. International Horticultural Congress: Biotechnology in horticultural crop improvement: achievements, opportunities and limitations

  • Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea L.): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    CAS  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273:2813–2838

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Sathyanarayanan PV, Poovaiah BW (2004) Decoding Ca2+ signals in plants. Crit Rev Plant Sci 23:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sawhney N, Sawhney S (2002) Local anaesthetic lidocaine modulates epiphyllous bud differentiation in Kalanchoe pinnata. Plant Growth Regul 38:45–49

    Article  CAS  Google Scholar 

  • Trewavas A (1999) Le Calcium, C’est la vie: calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • Yip W-K, Yang SF (1986) Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80(2):515–519

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Murch.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.P.A., Cao, J., O’Brien, R. et al. The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.. Plant Cell Rep 26, 1481–1490 (2007). https://doi.org/10.1007/s00299-007-0357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0357-0

Keywords

Navigation