Skip to main content
Log in

Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando A, Sakuradani E, Horinaka K, Ogawa J, Shimizu S (2009a) Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr Genet 55:349–356

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S (2009b) Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol 75:5529–5535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  PubMed  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    Article  CAS  PubMed  Google Scholar 

  • da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    Article  PubMed Central  PubMed  Google Scholar 

  • Daley JM, Palmbos PL, Wu DL, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451

    Article  CAS  PubMed  Google Scholar 

  • Haber JE (2000) Partners and pathways: repairing a double-strand break. Trends Genet 16:259–264

    Article  CAS  PubMed  Google Scholar 

  • Hande MP (2004) DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res 104:116–122

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Kobayashi K, Kirimura K (2011) Increases in gene-targeting frequencies due to disruption of kueA as a ku80 homolog in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 75:1594–1596

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Putnam CD, Tainer JA (2002) DNA double-strand break repair from head to tail. Curr Opin Struct Biol 12:115–122

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishidoh K, Kinoshita H, Ihara F, Nihira T (2014) Efficient and versatile transformation systems in entomopathogenic fungus Lecanicillium species. Curr Genet 60:99–108

    Article  CAS  PubMed  Google Scholar 

  • Jareonkitmongkol S, Sakuradani E, Shimizu S (1993) A novel Δ5-desaturase-defective mutant of Mortierella alpina 1S-4 and its dihomo-γ-linolenic acid productivity. Appl Environ Microbiol 59:4300–4304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanaar R, Hoeijmakers JH, van Gent DC (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 8:483–489

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Akamatsu Y, Sakuraba Y, Inoue H (2004) The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet 45:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kawashima H, Akimoto K, Fujita T, Naoki H, Konishi K, Shimizu S (1995) Preparation of 13C-labeled polyunsaturated fatty acids by an arachidonic acid-producing fungus Mortierella alpina 1S-4. Anal Biochem 229:317–322

    Article  CAS  PubMed  Google Scholar 

  • Kikukawa H, Sakuradani E, Kishino S, Park S-B, Ando A, Shima J, Ochiai M, Shimizu S, Ogawa J (2013) Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system. J Biosci Bioeng 116:672–676

    Article  CAS  PubMed  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29

    Article  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    Article  CAS  PubMed  Google Scholar 

  • Lisby M, Rothstein R (2004) DNA repair: keeping it together. Curr Biol 14:R994–R996

    Article  CAS  PubMed  Google Scholar 

  • Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okuda T, Ando A, Sakuradani E, Kikukawa H, Kamada N, Ochiai M, Shima J, Ogawa J (2014) Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Curr Genet 60:183–191

    Article  CAS  PubMed  Google Scholar 

  • Razanamparany V, Bégueret J (1986) Positive screening and transformation of ura5 mutants in the fungus Podospora anserina: characterization of the transformants. Curr Genet 10:811–817

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74:908–917

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999a) Δ6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999b) Δ9-fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus. Aspergillus. Eur J Biochem 260:208–216

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66:648–654

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Murata S, Kanamaru H, Shimizu S (2008) Functional analysis of a fatty acid elongase from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 81:497–503

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422

    Article  CAS  PubMed  Google Scholar 

  • Schiestl RH, Zhu J, Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14:4493–4500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shibata T, Nishinaka T, Mikawa T, Aihara H, Kurumizaka H, Yokoyama S, Ito Y (2001) Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material. Proc Natl Acad Sci USA 98:8425–8432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shiotani H, Tsuge T (1995) Efficient gene targeting in the filamentous fungus Alternaria alternata. Mol Gen Genet 248:142–150

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Mizutani O, Shiraishi Y, Yamada O (2011) Development of an efficient gene-targeting system in Aspergillus luchuensis by deletion of the non-homologous end joining system. J Biosci Bioeng 112:529–534

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004a) Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S-4. Biosci Biotechnol Biochem 68:277–285

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004b) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 65:419–425

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005a) Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol 71:5124–5128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005b) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622

    Article  CAS  PubMed  Google Scholar 

  • Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T (2013) Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398:728–731

    Article  PubMed  Google Scholar 

  • Watrin L, Lucas S, Purcarea C, Legrain C, Prieur D (1999) Isolation and characterization of pyrimidine auxotrophs, and molecular cloning of the pyrE gene from the hyperthermophilic archaeon Pyrococcus abyssi. Mol Gen Genet 262:378–381

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li M, Wei D, Wang X, Chen X, Xing L (2007) Disruption of the fatty acid Δ6-desaturase gene in the oil-producing fungus Mortierella isabellina by homologous recombination. Curr Microbiol 55:128–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants-in Aid for Scientific Research of Japan (Numbers 22380051 to E. Sakuradani and 23248014 to J. Ogawa), the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) of Japan, and the Advanced Low Carbon Technology Research and Development Program (ALCA) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ogawa.

Additional information

Communicated by G. Goldman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikukawa, H., Sakuradani, E., Nakatani, M. et al. Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr Genet 61, 579–589 (2015). https://doi.org/10.1007/s00294-015-0481-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0481-2

Keywords

Navigation