Skip to main content

Advertisement

Log in

Purifying selection against gene conversions between the polyamine transport (TPO) genes of Saccharomyces species

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Saccharomyces species have five TPO genes, TPO1 through TPO5, coding for proteins that are involved in up taking or excreting intracellular spermine, putrescine or spermidine. Here, we investigate the evolutionary fate and functional impacts of gene conversions between these genes. Our results show that gene conversions occurred only between the TPO2 and TPO3 genes of the six Saccharomyces species we studied. They also show that these gene conversions occurred independently in all six species. The facts that they only occur between closely related genes having similar function, and that they are limited to the transmembrane domain of these proteins, suggest that they have little functional impact. These gene conversions therefore likely represent neutral mutations which are not subject to purifying selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Benovoy D, Drouin G (2009) Ectopic gene conversions in the human genome. Genomics 93:27–32

    Article  CAS  PubMed  Google Scholar 

  • Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA (2006) Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat 27:545–552

    Article  CAS  PubMed  Google Scholar 

  • Casola C, Zekonyte U, Phillips AD, Cooper DN, Hahn MW (2012) Interlocus gene conversion events introduce deleterious mutations in at least 1% of human genes associated with inherited disease. Genome Res 22:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J-M, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nature Rev Genet 8:762–775

    Article  CAS  PubMed  Google Scholar 

  • Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe TY, Schroeder M, Weng S, Botstein D (1998) SGD: saccharomyces genome database. Nucleic Acids Res 26:73–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drouin G (2002) Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 55:14–23

    Article  CAS  PubMed  Google Scholar 

  • Drouin G, Prat F, Ell M, Clarke GD (1999) Detecting and characterizing gene conversions between multigene family members. Mol Biol Evol 16:1369–1390

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Sys Biol 52:696–704

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hiwatashi T, Mikami A, Katsumura T, Suryobroto B, Perwitasari-Farajallah D, Malaivijitnond S, Siriaroonrat B, Oota H, Goto S, Kawamura S (2011) Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol 11:312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48:506–512

    Article  CAS  PubMed  Google Scholar 

  • Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris RT, Drouin G (2010) Ectopic gene conversions in the genome of ten hemiascomycete yeast species. Int J Evol Biol 2011:970768

    PubMed Central  PubMed  Google Scholar 

  • Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM (2004) Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 14:354–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petronella N, Drouin G (2011) Gene conversions in the growth hormone gene family of primates: stronger homogenizing effects in the Hominidae lineage. Genomics 98:173–181

    Article  CAS  PubMed  Google Scholar 

  • Petronella N, Drouin G (2014) Purifying selection against gene conversions in the folate receptor genes of primates. Genomics 103:40–47

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Casero RA, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42:711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

  • Sawyer SA (1999) GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis. Available at http://www.math.wustl.edu/~sawyer

  • Tachihara K, Uemura T, Kashiwagi K, Igarashi K (2005) Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280:12637–12642

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific GAP penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomitori H, Kashiwagi K, Sakata K, Kakinuma Y, Igarashi K (1999) Identification of a gene for a polyamine transport protein in yeast. J Biol Chem 274:3265–3267

    Article  CAS  PubMed  Google Scholar 

  • Tomitori H, Kashiwagi K, Asakawa T, Yoshimi K, Michael AJ, Kazuei I (2001) Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 352:681–688

    Article  Google Scholar 

  • Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Clark T, Zheng H, Vang S, Li R, Wong GK, Wang J, Zheng X (2008) Gene conversion in the rice genome. BMC Genom 9:93

    Article  Google Scholar 

  • Zid M, Drouin G (2013) Gene conversions are under purifying selection in the carcinoembryonic antigen immunoglobulin gene families of primates. Genomics 102:301–309

    Article  CAS  PubMed  Google Scholar 

  • Zid M, Drouin G (2014) Gene conversions are frequent but not under positive selection in the Siglec gene families of primates. Genome (in press)

Download references

Acknowledgments

We thank the two anonymous referees for their constructive comments. This work was supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canada to G. D. and by an Undergraduate Research Opportunity Program scholarship from the University of Ottawa to G.S. and G.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Drouin.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampathkumar, G., Drouin, G. Purifying selection against gene conversions between the polyamine transport (TPO) genes of Saccharomyces species. Curr Genet 61, 67–72 (2015). https://doi.org/10.1007/s00294-014-0445-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0445-y

Keywords

Navigation