Skip to main content
Log in

Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria)

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem–loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions. Mol Biol Evol 17:1146–1155

    PubMed  CAS  Google Scholar 

  • Besendahl A, Qiu Y-L, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I-intron. Curr Genet 37:12–23

    Article  PubMed  CAS  Google Scholar 

  • Borsch T, Hilu W, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT–trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    Article  PubMed  CAS  Google Scholar 

  • Costa J-L, Paulsrud P, Lindblad P (2002) The cyanobacterial tRNALeu (UAA) intron: evolutionary patterns in a genetic marker. Mol Biol Evol 19(6):850–857

    Google Scholar 

  • Costa J-L, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396

    Article  PubMed  CAS  Google Scholar 

  • Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Dirks RM, Pierce NA (2004) An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J Comput Chem 25:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49:65–88

    Article  Google Scholar 

  • Elhai J, Kato M, Cousins S, Lindblad P, Costa JL (2008) Very small mobile repeated elements in cyanobacterial genomes. Genome Res 18:1484–1499

    Article  PubMed  CAS  Google Scholar 

  • Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. The Bryologist 114(1):220–230

    Article  Google Scholar 

  • Han D, Fan Y, Hu Z (2009) An evaluation of four phylogenetic markers in Nostoc: implications for cyanobacterial phylogenetic studies at the intragenic level. Curr Microbiol 58:170–176

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of bayesian inference of phylogeny. Syst Biol 51:673–688

    Article  PubMed  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phyl Evol 8:385–397

    Article  CAS  Google Scholar 

  • Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262

    Article  PubMed  CAS  Google Scholar 

  • Müller K (2007) PRAP2-Likelihood and parsimony ratchet analysis, v.0.9

  • Müller K, Quandt D, Müller J, Neinhuis C (2005) PhyDE® 0.995: Phylogenetic Data Editor, http://www.phyde.de

  • Müller KF, Borsch T, Khidir WH (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnF, and rbcL in basal angiosperms. Mol Phyl Evol 41:99–117

    Article  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Google Scholar 

  • Oksanen I, Lohtander K, Sivonen K, Rikkinen J (2004) Repeat type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Int J Syst Evol Microbiol 54:765–772

    Article  PubMed  CAS  Google Scholar 

  • Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol 53:571–581

    Article  PubMed  Google Scholar 

  • Paquin B, Kathe SD, Nierzwicki-Bauer SA, Shub DA (1997) Origin and evolution of group-I introns in cyanobacterial tRNA genes. J Bacteriol 179:6798–6806

    PubMed  CAS  Google Scholar 

  • Paulsrud P, Lindblad P (1998) Sequence variation of the tRNALeu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ Microbiol 64:310–315

    PubMed  CAS  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524

    Article  CAS  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2000) Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol 146:291–299

    Article  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2001) Field investigations on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152:117–123

    Article  Google Scholar 

  • Pirie MD, Balcázar Vargas MP, Botermans M, Bakker F, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematic. Am J Bot 94:1003–1016

    Article  PubMed  Google Scholar 

  • Quandt D, Stech M (2005) Molecular evolution of the trnL (UAA) intron in bryophytes. Mol Phylogenet Evol 36:429–443

    Article  PubMed  CAS  Google Scholar 

  • Quandt D, Müller K, Stech M, Frahm JP, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Mo Bot Gard 98:13–37

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guild share related cyanobacterial symbionts. Science 297(5580):357

    Google Scholar 

  • Rudi K, Jakobsen KS (1999) Complex evolutionary patterns of tRNALeu (UAA) group-I introns in cyanobacterial radiation. J Bacteriol 181:3445–3451

    PubMed  CAS  Google Scholar 

  • Rudi K, Fossheim T, Jakobsen KS (2002) Nested evolution of a tRNALeu (UAA) group I intron by both horizontal intron transfer and recombination of the entire tRNA locus. J Bacteriol 184:666–671

    Article  PubMed  CAS  Google Scholar 

  • Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720

    Article  PubMed  CAS  Google Scholar 

  • Sotiaux A, Enroth J, Olsson S, Quandt D, Vanderpoorten A (2009) When morphology and molecules tell us different stories: a case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. J Bryol 31:186–196

    Article  Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14

    Article  PubMed  Google Scholar 

  • Wright D, Prickett T, Helm RF, Potts M (2001) Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51:1839–1852

    Article  PubMed  CAS  Google Scholar 

  • Zadeh N, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. Ares and J. Bois are acknowledged for helpful discussion. The project was funded by the Finnish Academy (grant to JR, project number 122288). We are grateful to the comments of the reviewers and the associated editor Stefan Hohmann.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Olsson.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, S., Kaasalainen, U. & Rikkinen, J. Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria). Curr Genet 58, 49–58 (2012). https://doi.org/10.1007/s00294-011-0364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-011-0364-0

Keywords

Navigation