Skip to main content
Log in

Synthesis and thermal analysis of poly(methyl methacrylate) oligomer functionalized polyethylene block copolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Living oligomers of methyl methacrylate (MMA) were synthesized photochemically with iron(III) tris(oxalato) ferrate(III) tetrahydrate (Fe[Fe(C2O4)3]·4H2O) as photoinitiator under UV irradiation of 254 nm at 40 °C in dimethyl sulfoxide in the presence of triethylamine as coinitiator. The synthesized oligomers were incorporated in the ethylene chain by reverse atom transfer radical polymerization in N,N′-dimethylformamide using 2,2′-azobisisobutyronitrile as initiator with FeCl3/2,2′-bipyridine (bpy) catalyst system. FT-IR and 1H NMR analysis confirms the incorporation of pre-synthesized poly(MMA) in the ethylene chain. Thermogravimetric analysis of the copolymer shows a three step decomposition process with the major decomposition at approximately 380 °C. Apparent activation energy (E a) of each step was calculated using non-isothermal methods of Kissinger, Friedeman, Flynn–Wall–Ozawa (FWO) and modified Coats-Redfern (MCR). The E a value obtained from FWO and MCR methods shows good agreement and the value for the final step of decomposition was calculated to be 235 kJ mol−1. The conversion dependency of decompositions on the process rate can be best explained by Sestak-Berggren model which can be established as \(\begin{aligned} f(\alpha ) = 3.67 \times 10^{2} \exp \left( {\frac{-199.28}{RT}} \right)(1 - \alpha )^{2.03} \alpha^{3.03} \hfill \\ \hfill \\ \end{aligned}\) with pre-exponential factor (A) = 3.67 × 102 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Boaen NK, Hillmyer MA (2005) Postpolymerization functionalization of polyolefins. Chem Soc Rev 34:267–275

    Article  CAS  Google Scholar 

  2. Clark HC, Jablonski CR (1974) Insertion of ethylene into a cationic hydrido(acetone)platinum(II) complex. Kinetics and mechanism. Inorg Chem 13:2213–2218

    Article  CAS  Google Scholar 

  3. Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett 3:118–122

    Article  Google Scholar 

  4. Passaglia E, Coiai S, Cicogna F, Ciardelli F (2014) Some recent advances in polyolefin functionalization. Polym Int 63:12–21

    Article  CAS  Google Scholar 

  5. Wiles DM, Scott G (2006) Polyolefins with controlled environmental degradability. Polym Degrade Stabil 91:1581–1592

    Article  CAS  Google Scholar 

  6. Lee TY, Roper TM, Jonsson ES, Kudyakov I, Viswanathan K, Nason C, Guymon CA, Hoyle CE (2003) The kinetics of vinyl acrylate photopolymerization. Polymer 44:2859–2865

    Article  CAS  Google Scholar 

  7. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Neutral single-component Nickel(II) polyolefin catalysts that tolerate heteroatoms. Science 287:460–462

    Article  CAS  Google Scholar 

  8. Moineau G, Dubois Ph, Jerome R, Senninger T, Tessie Ph (1998) Alternative atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: an easy way to well-controlled PMMA. Macromolecules 31:545–547

    Article  CAS  Google Scholar 

  9. Wang G, Zhu X, Cheng Z, Zhu J (2006) New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J Polym Sc 44:2912–2921

    Article  CAS  Google Scholar 

  10. Ozturk T, Cakmak I (2008) Synthesis of poly(ethylene glycol-b-styrene) block copolymers by reverse atom transfer radical polymerization. J Polym Res 15:241–247

    Article  CAS  Google Scholar 

  11. Yagci Y, Schnabel W (1990) Light-induced synthesis of block and graft copolymers. Prog Polym Sci 15:551–601

    Article  CAS  Google Scholar 

  12. Ruzette AV, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31

    Article  CAS  Google Scholar 

  13. Shipp DA, Wang J, Matyjaszewski K (1998) Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization. Macromolecules 31:8005–8008

    Article  CAS  Google Scholar 

  14. Bates FM, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Ann Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  15. Bilalis P, Pitsikalis M, Hadjichristidis N (2006) Controlled nitroxide mediated and reversible addition-fragmentation chain transfer polymerization of N-vinylpyrrolidone: synthesis of block copolymers with styrene and 2-vinylpyridine. J Polym Sci Part A Polym Chem 44:659–665

    Article  CAS  Google Scholar 

  16. Noshay A, Mcgrath JE (1977) Block copolymers, overview and critical survey. Academic Press, New York

    Google Scholar 

  17. Makarova LI, Filimonova LV, Dubrovina LV, Buzin MI, Nikiforova GG, Zavin BG, Papkov VS (2010) Synthesis and properties of siloxane(ethylene oxide) urethane block copolymers. Polym Sci Ser B 52:346–352

    Article  Google Scholar 

  18. Vinchon Y, Reeb R, Riess G (1976) Preparation of macromolecular azo initiators by anionic polymerization: application to synthesis of block copolymers. Eur Polym J 12:317–321

    Article  CAS  Google Scholar 

  19. Peng ZP, Wang D, Liu X, Tong Z (2007) RAFT synthesis of a water-soluble triblock copolymer of poly(styrenesulfonate)-b-poly(ethylene glycol)-b-poly(styrenesulfonate) using a macromolecular chain transfer agent in aqueous solution. J Polym Sci Part A Polym Chem 45:3698–3706

    Article  CAS  Google Scholar 

  20. Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Yamamoto K, Kishida A (2005) Fabrication of high density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38:4604–4610

    Article  CAS  Google Scholar 

  21. Benarbia A, Elidrissi A, Ganetri I, Touzani R (2014) Synthesis, characterization and thermal degradation kinetics of copolyesters. J Mater Environ Sci 5:1262–1279

    Google Scholar 

  22. Sanyal TK, Das NN (1980) Synthesis and the thermal decomposition of iron(III) tris(oxalato) ferrate(III) tetrahydrate. J Inorg Nucl Chem 42:811–813

    Article  CAS  Google Scholar 

  23. Malek J, Criado JM (1994) A simple method of kinetic-model discrimination. 1. Analysis of differential nonisothermal data. Thermochim Acta 236:187–197

    Article  CAS  Google Scholar 

  24. Atkins P, Paula J (2010) Physical chemistry, 9th edn. WH Freeman, New York

    Google Scholar 

  25. Brown ME (2001) Introduction to thermal analysis, 2nd edn. Kluwer, Dodrecht

    Google Scholar 

  26. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  27. Friedeman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci 6:183–195

    Google Scholar 

  28. Ozawa T (2000) Thermal analysis-review and prospect. Thermochim Acta 355:35–42

    Article  CAS  Google Scholar 

  29. Flynn JH (1991) General differential technique for the determination of parameters for d(α)/dt = f(α)A exp (−E/RT). Energy of activation, pre exponential factor and order of reaction (when applicable). J Therm Anal 37:293–305

    Article  CAS  Google Scholar 

  30. Jankovic B, Kolar-Anic L, Smiciklas I, Dimovic S, Arandelovic D (2009) The non-isothermal thermogravimetric tests of animal bones combustion. Part 1: kinetic analysis. Thermochim Acta 495:129–138

    Article  CAS  Google Scholar 

  31. Akahira T, Sunose T (1971) Joint convention of four electrical institutes. Res Rep Chiba Inst Technol 16:22–23

    Google Scholar 

  32. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  33. Jankovic B, Mentus S, Jankovic M (2008) A kinetic study of the thermal decomposition process of potassium metabisulfite: estimation of distributed reactivity model. J Phys Chem Solids 69:1923–1933

    Article  CAS  Google Scholar 

  34. Ozturk T, Goktas M, Hazer B (2010) One-step synthesis of triarm block copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization. J Appl Polym Sci 117:1638–1645

    Google Scholar 

  35. Ozturk T, Goktas M, Hazer B (2011) Synthesis and characterization of poly(methyl methacrylate-block-ethyleneglycol-block-methyl methacrylate) block copolymers by reversible addition fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 48:265–272

    Google Scholar 

  36. Ozturk T, Yavuz M, Goktas M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513

    Article  CAS  Google Scholar 

  37. Cowie JMG (1985) Alternating copolymers. Plenum Press, New York

    Book  Google Scholar 

  38. Moayed SH, Fatemi S, Pourmahdian S (2007) Synthesis of a latex with bimodal particle size distribution for coating applications using acrylic monomers. Prog Org Coat 60:312–319

    Article  CAS  Google Scholar 

  39. Biros J, Larina T, Trekoval J, Pouchly J (1982) Dependence of the glass transition temperature of poly(methyl methacrylates) on their tacticity. Colloid Polym Sci 260:27–30

    Article  CAS  Google Scholar 

  40. Kermagoret A, Debuigne A, Jerome C, Detrembleur C (2014) Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nature Chem 6:179–187

    Article  CAS  Google Scholar 

  41. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Effects of weak linkages on the thermal and oxidative degradation of Poly(methyl methacrylates). Macromolecules 19:2160–2168

    Article  CAS  Google Scholar 

  42. Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers, sect 1, chap 7. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 3rd edn.  National Fire Protection Association Inc, Quincy, Massachusetts

  43. Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  44. Assanvo EF, Konwar D, Baruah SD (2015) Thermal behavior of Ricinodendron heudelotii oil polymer. J Therm Anal Calorim 119:1995–2003

    Article  CAS  Google Scholar 

  45. Malek J (1992) The kinetic analysis of non isothermal data. Thermochim Acta 200:257–269

    Article  CAS  Google Scholar 

  46. Malek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253

    Article  CAS  Google Scholar 

  47. Svoboda R, Malek J (2011) Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta 526:237–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. D. Ramaiah, Director, CSIR-North East Institute of Science and Technology, Jorhat for his permission to publish the results. Financial support from CSIR-network Project CSC-0206 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi D. Baruah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, U., Saikia, M., Assanvo, E.F. et al. Synthesis and thermal analysis of poly(methyl methacrylate) oligomer functionalized polyethylene block copolymer. Polym. Bull. 74, 2137–2158 (2017). https://doi.org/10.1007/s00289-016-1828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1828-7

Keywords

Navigation