Skip to main content
Log in

Poly(N-vinyl caprolactam-co-maleic acid) microparticles for cationic dye removal

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, new pH-sensitive polymeric microparticles were obtained by the cross-linking of poly(N-vinyl caprolactam-co-maleic acid) (VCL-MAc). Their swelling in pure water was very high, but was in a large extent influenced by the pH and by the presence of cationic hydrophobic molecules. These microparticles were successfully used in the adsorption of rhodamine 6G and methylene blue from aqueous solution. The effect of different parameters such as initial pH, adsorbent dose, temperature, initial dye concentration, and contact time on their dye adsorption capacity was studied using the batch-adsorption technique. The equilibrium adsorption data were better fitted with Langmuir isotherm, compared to Freundlich model. The maximum adsorption capacities at pH = 10 were found 2012 and 1441 mg/g for rhodamine 6G and methylene blue, respectively. The kinetic experimental data were well described by the pseudo-second-order model, the rate constant k 2 increasing with the pH and the initial dye concentration. The results show that the new VCL-MAc microparticles can be effectively used in the removal of cationic dyes from waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Env Sci Technol 30:449–505. doi:10.1080/10643380091184237

    Article  CAS  Google Scholar 

  2. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi:10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  3. Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol. doi:10.4172/2161-0525.S2-001

    Google Scholar 

  4. Panić VV, Seslija SI, Nesic AR, Velickovic SJ (2013) Adsorption of azo dyes on polymer materials. Hem Ind 67:881–900. doi:10.2298/HEMIND121203020P

  5. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590. doi:10.1016/j.cej.014.01.065

    Article  CAS  Google Scholar 

  6. Delben F, Paoletti S, Porasso RD, Benegas JC (2006) Potentiometric titrations of maleic acid copolymers in dilute aqueous solution: experimental results and theoretical interpretation. Macromol Chem Phys 207:2299–2310. doi:10.1002/macp.200600479

    Article  CAS  Google Scholar 

  7. Popescu I, Suflet DM, Pelin IM, Popa MI (2012) Influence of the comonomer on the dissociation of some alternating maleic acid copolymers. J Macromol Sci Part B Phys 51:1–15. doi:10.1080/00222348.2011.609784

    Article  Google Scholar 

  8. Popescu I, Suflet DM, Pelin IM, Chitanu GC (2011) Biomedical applications of maleic anhydride copolymers. Rev Roum Chim 56:173–188

    CAS  Google Scholar 

  9. Chiţanu GC, Carpov A (2002) Ecologically benign polymers: the case of maleic polyelectrolytes. Environ Sci Technol 36:1856–1860. doi:10.1021/es010094s

    Article  Google Scholar 

  10. Anghelescu-Dogaru AG, Popescu I, Chiţanu GC (2004) Maleic polyelectrolytes as ecologically favourable additives in chrome tanning process. J Environ Prot Ecol 5:265–270

  11. Zhou Y, Yu D, Xi P (2003) Influence of styrene-maleic anhydride copolymers on the stability of quinacridone red pigment suspensions. J Dispers Sci Technol 24:731–737. doi:10.1081/DIS-120023821

    Article  CAS  Google Scholar 

  12. Saraydin D, Karadağ E, Güven O (2001) Use of superswelling acrylamide/maleic acid hydrogels for monovalent cationic dye adsorption. J Appl Polym Sci 79:1809–1815. doi:10.1002/1097-4628(20010307)79:10<1809:AID-APP90>3.0.CO;2-L

    Article  CAS  Google Scholar 

  13. Karadaǧ E, Üzüm ÖB, Saraydin D (2002) Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur Polym J 38:2133–2141. doi:10.1016/S0014-3057(02)00117-9

  14. Taşdelen B, Osmanglioglu AE, Kam E (2013) Cationic dye adsorption by poly(N-isopropylacrylamide/maleic acid) copolymer hydrogels prepared by gamma ray. J Radioanal Nucl Chem 298:1469–1476. doi:10.1007/s10967-013-2557-0

  15. Velásquez CL, Ramírez M, Millán E, Medina A (2012) Swelling studies and adsorption of safranin T by acrylamide/maleic acid/methylene-bis-acrylamide based hydrogels. e-Polymers 12:289–303. doi:10.1515/epoly.2012.12.1.289

    Article  Google Scholar 

  16. Kam E, Taşdelen B, Osmanlioglu AE (2012) Uranyl ion uptake capacity of poly (N-isopropylacrylamide/maleic acid) copolymeric hydrogels prepared by gamma rays. Radiat Phys Chem 81:618–662. doi:10.1016/j.radphyschem.2012.02.041

    Article  CAS  Google Scholar 

  17. Moghadam PN, Hasanzadeh R, Khalafy J (2013) Preparation of SMA functionalized sulfanilic acid hydrogels and investigation of their metal ions adsorption behavior. Iran Polym J 22:133–142. doi:10.1007/s13726-012-0111-5

    Article  Google Scholar 

  18. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222. doi:10.1021/ma011034+

    Article  CAS  Google Scholar 

  19. Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618. doi:10.1021/jp2071056

    Article  CAS  Google Scholar 

  20. Churilina EV, Shatalov GV, Korenman Ya I, Sukhanov PT, Bolotov VM (2008) Extraction and preconcentration of anthocyan dye from aqueous solutions with water-soluble poly-N-vinylamides. Russ J Appl Chem 81:726–729

    Article  CAS  Google Scholar 

  21. Imaz A, Forcada J (2010) N-vinylcaprolactam-based microgels for biomedical applications. J Appl Polym Sci Part A Polym Chem 48:1173–1181. doi:10.1002/pola.23876

  22. Liang X, Liu F, Kozlovskaya V, Palchak Z, Kharlampieva E (2015) Thermoresponsive micelles from double LCST-poly(3-methyl-N-vinylcaprolactam) block copolymers for cancer therapy. ACS Macro Lett 4:308–311. doi:10.1021/mz500832a

    Article  CAS  Google Scholar 

  23. Popescu I, Prisacaru AI, Suflet DM, Fundueanu G (2014) Thermo- and pH-sensitivity of poly (N-vinylcaprolactam-co-maleic acid) in aqueous solution. Polym Bull 71:2863–2880. doi:10.1007/s00289-014-1227-x

    Article  CAS  Google Scholar 

  24. Pepper KW, Reichenberg D, Hale DK (1952) Properties of ion-exchange resins in relation to their structure. Part IV. Swelling and shrinkage of sulphonated polystyrenes of different crosslinking. J Am Chem Soc 15:3129–3136. doi:10.1039/JR9520003129

    Article  Google Scholar 

  25. Sasaki S, Yataki K, Maeda H (1995) Contraction of the copolymer gel of maleic acid and styrene in the range of degree of ionization above 0.5. J Colloid Interface Sci 176:39–42. doi:10.1006/jcis.1995.0005

    Article  CAS  Google Scholar 

  26. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110. doi:10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  27. Wang L, Li Q, Wang A (2010) Adsorption of cationic dye on N,O-carboxymethylchitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism. Polym Bull 65:961–975. doi:10.1007/s00289-010-0363-1

  28. Coşkun R (2011) Removal of cationic dye from aqueous solution by adsorption onto crosslinked poly(4-vinylpyridine/crotonic acid) and its N-oxide derivative. Polym Bull 67:125–140

    Article  Google Scholar 

  29. Yang Y, Wei X, Sun P, Wan J (2010) Preparation, characterization and adsorption performance of a novel anionic starch microsphere. Molecules 15:2872–2885. doi:10.1007/s00289-011-0463-6

    Article  CAS  Google Scholar 

  30. Xu S, Wang J, Wu R, Wang J, Li H (2006) Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chem Eng J 117:161–167. doi:10.1016/j.cej.2005.12.012

    Article  CAS  Google Scholar 

  31. Bradl H (2004) Adsorption of heavy metal ions on clays. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, update supplement. Marcel Dekker, New York, p 37

    Google Scholar 

  32. Langmuir I (1918) The adsorption of gases on plan surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  33. Freundlich HMF (1906) Über die adsorptionin lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  34. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  35. Tian D, Zhang X, Lu C, Yuan G, Zhang W, Zhou Z (2014) Solvent-free synthesis of carboxylate-functionalized cellulose from waste cotton fabrics for the removal of cationic dyes from aqueous solutions. Cellulose 21:473–484. doi:10.1007/s10570-013-0112-3

    Article  CAS  Google Scholar 

  36. Yan H, Zhang W, Kan X, Dong L, Jiang Z, Li H, Yanga H, Cheng R (2011) Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids Surf A Physicochem Eng Asp 380:143–151. doi:10.1016/j.colsurfa.2011.02.045

  37. Narayanan RK, Nethran NK, Devaki SJ, Rao TP (2014) Robust polymeric hydrogel using rod-like amidodiol as crosslinker: studies on adsorption kinetics and mechanism using dyes as adsorbate. J Appl Polym Sci 131:40908–40916. doi:10.1002/app.40908

  38. Xing Y, Li S (2014) Biosorption of methylene blue from aqueous solution by poly(amic acid)-modified chitosan. Environ Prog Sustain Energy 33:1180–1186. doi:10.1002/ep.11904

  39. Xing Y, Sun X, Li B (2009) Poly(methacrylic acid)-modified chitosan for enhancement adsorption of water-soluble cationic dyes. Polym Eng Sci 49:272–280. doi:10.1002/pen.21253

  40. Bajpai SK, Chand N, Mahendra M (2012) The adsorptive removal of cationic dye from aqueous solution using poly (methacrylic acid) hydrogels: Part-I. equlibrium studies. Int J Environ Sci 2:1609–1624

  41. Yang Y, Xie Y, Pang L, Li M, Song X, Wen J, Zhao H (2013) Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir 29:10727–10736. doi:10.1021/la401940z

    Article  CAS  Google Scholar 

  42. Shukla NB, Rattan S, Madras G (2012) Swelling and dye-adsorption characteristics of an amphoteric superabsorbent polymer. Ind Eng Chem Res 51:14941–14948. doi:10.1021/ie301839z

    Article  CAS  Google Scholar 

  43. Shukla NB, Madras G (2012) Kinetics of adsorption of methylene blue and rhodamine 6G on acrylic acid-based superabsorbents. J Appl Polym Sci 126:463–472. doi:10.1002/app.36717

    Article  CAS  Google Scholar 

  44. Qu B, Li J, Xiao H, He B, Qian L (2014) Preparation of sodium carboxymethylcellulose/poly(methyl acrylate) IPN hydrogels and their application for adsorption. J Appl Polym Sci 131:41101–41106. doi:10.1002/app.41101

    Google Scholar 

  45. Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322:47–53. doi:10.1016/j.colsurfa.2008.02.019

    Article  CAS  Google Scholar 

  46. Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179. doi:10.1007/s00289-012-0898-4

    Article  CAS  Google Scholar 

  47. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöester stoffe. Kung-liga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  48. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. doi:10.1016/j.jhazmat.2005.12.043

    Article  CAS  Google Scholar 

  49. Weber WJ, Morris J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–59

    Google Scholar 

  50. Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater B137:1538–1544. doi:10.1016/j.jhazmat.2006.04.036

    Article  Google Scholar 

  51. Ashour SS (2010) Kinetic and equilibrium adsorption of methylene blue and remazol dyes onto steam-activated carbons developed from date pits. J Saudi Chem Soc 14:47–53. doi:10.1016/j.jscs.2009.12.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by two grants of the Romanian Ministry of Education, CNCS-UEFISCDI, projects number PN-II-RU-PD-2012-3–0059 and PN-II-PT-PCCA-2013-4-1149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, I., Suflet, D.M. Poly(N-vinyl caprolactam-co-maleic acid) microparticles for cationic dye removal. Polym. Bull. 73, 1283–1301 (2016). https://doi.org/10.1007/s00289-015-1549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1549-3

Keywords

Navigation