Skip to main content
Log in

Assembly of conducting polypyrrole hydrogels as a suitable adsorbent for Cr(VI) removal

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Unique polypyrrole (PPy) hydrogels are prepared by using orange IV as the dopant and FeCl3 as the oxidant. The static polymerization of pyrrole monomer in aqueous solution is accompanied with self-assembly of PPy hydrogel. PPy hydrogels not only show good electrical conductivities, but also exhibit excellent water-absorbent behaviors. The macroscopic appearance, microscopic morphology and water-absorbent behaviors of PPy hydrogels can be controlled by the choice of the reaction condition. The effects of ionic strength on the physical properties of PPy hydrogels are also studied. The results indicate that PPy hydrogels show improved water absorbencies in saline solution. Moreover, PPy hydrogel is used as an efficient adsorbent to remove Cr(VI) from aqueous solutions. PPy hydrogel exhibits much better adsorption performance than common PPy nanoparticles. This kind of PPy hydrogel is expected to be a potential candidate for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by nanofiber seeding. J Am Chem Soc 126:4502–4503

    Article  CAS  Google Scholar 

  2. Sirivisoot S, Pareta R, Webster T, Webster J (2011) Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 22:085101

    Article  Google Scholar 

  3. Dumanli AG, Erden A, Yurum Y (2012) Development of supercapacitor active composites by electrochemical deposition of polypyrrole on carbon nanofibres. Polym Bull 68:1395–1404

    Article  CAS  Google Scholar 

  4. Tsai TS, Pillay V, Choonara YE, du Toit LC, Modi G, Naidoo D, Kumar P (2011) A polyvinyl alcohol-polyaniline based electro-conductive hydrogel for controlled stimuli-actuable release of indomethacin. Polymers 3:150–172

    Article  CAS  Google Scholar 

  5. Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17:973–981

    Article  CAS  Google Scholar 

  6. da Silva LBJ, Orefice RL (2014) Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J Polym Res 21:466

    Article  Google Scholar 

  7. Kim SJ, Kim MS, Kim SI, Spinks GM, Kim BC, Wallace GG (2006) Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem Mater 18:5805–5809

    Article  CAS  Google Scholar 

  8. Marcasuzaa P, Reynaud S, Ehrenfeld F, Khoukh A, Desbrieres J (2010) Chitosan-graft-polyaniline-based hydrogels: elaboration and properties. Biomacromolecules 11:1684–1691

    Article  CAS  Google Scholar 

  9. Guo B, Finne-Wistrand A, Albertsson AC (2011) Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem Mater 23:1254–1262

    Article  CAS  Google Scholar 

  10. Blinova NV, Trchova M, Stejskal J (2009) The polymerization of aniline at a solution-gelatin gel interface. Eur Polymer J 45:668–673

    Article  CAS  Google Scholar 

  11. Xiao Y, He L, Che J (2012) An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. J Mater Chem 22:8076–8082

    Article  CAS  Google Scholar 

  12. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications. J Mater Sci 41:4974–4977

    Article  CAS  Google Scholar 

  13. Du R, Xu Y, Luo Y, Zhang X, Zhang J (2011) Synthesis of conducting polymer hydrogels with 2D building blocks and their potential-dependent gel-sol transitions. J Chem Soc Chem Commun 47:6287–6289

    Article  CAS  Google Scholar 

  14. Chen L, Kim BS, Nishino M, Gong JP, Osada Y (2000) Environmental responses of polythiophene hydrogels. Macromolecules 33:1232–1236

    Article  CAS  Google Scholar 

  15. Mawad D, Stewart E, Officer DL, Romeo T, Wagner P, Wagner K, Wallace GG (2012) A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater 22:2692–2699

    Article  CAS  Google Scholar 

  16. Dai T, Jiang X, Hua S, Wang X, Lu Y (2008) Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly. J Chem Soc Chem Commun 36:4279–4281

    Article  Google Scholar 

  17. Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yu X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836

    Article  CAS  Google Scholar 

  18. Pepin-Donat B, Viallat A, Blachot JF, Lombard C (2006) Electromechanical polymer gels combining rubber elasticity with electronic conduction. Adv Mater 18:1401–1405

    Article  CAS  Google Scholar 

  19. Tang Q, Wu J, Lin J (2008) A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid. Carbohydr Polym 73:315–321

    Article  CAS  Google Scholar 

  20. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  CAS  Google Scholar 

  21. Talens-Alesson FI, Anthony S, Bryce M (2004) Complexation of organic compounds in the presence of Al3+ during micellar flocculation. Water Res 38:1477–1483

    Article  CAS  Google Scholar 

  22. Romero A, Cascales J, Otero TF (2005) In situ FTIR spectroscopy study of the break-in phenomenon observed for PPy/PVS films in acetonitrile. J Phys Chem B 109:21078–21085

    Article  Google Scholar 

  23. Bohidar HB, Dubin P, Osada Y (2002) Polymer gels: fundamentals and applications. Am Chem Soc, Washington DC

    Book  Google Scholar 

  24. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  25. Castel D, Ricard A, Audebert R (1990) Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J Appl Polym Sci 39:11–29

    Article  CAS  Google Scholar 

  26. Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Interfaces 2:3619–3627

    Article  CAS  Google Scholar 

  27. Basso MC, Cerrella EG, Cukierman AL (2002) Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Ind Eng Chem Res 41:3580–3585

    Article  CAS  Google Scholar 

  28. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2014059), Outstanding Youth Scientific Innovation Team of Colleges and Universities in Hubei Province (T201406), Outstanding Youth Scientific Foundation of Hubei Province (2012FFA021), National Natural Science Foundation of China (51403167, 51374155) and Science and Technology Support Program of Hubei Province (2014BCB034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, J., Zhang, X. et al. Assembly of conducting polypyrrole hydrogels as a suitable adsorbent for Cr(VI) removal. Polym. Bull. 72, 2891–2902 (2015). https://doi.org/10.1007/s00289-015-1442-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1442-0

Keywords

Navigation