Skip to main content
Log in

Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hydrogels that are capable of responding to electrical stimuli, pH, and temperature are of great interest for developing artificial muscles, biosensors, drug release devices, etc. This study reports on the synthesis, characterization, and performance of a responsive conducting hydrogel, designed and prepared to be part of an artificial muscle system. This hydrogel was obtained using two basic components: (1) poly(isopropyl acrylamide–co–acrylic acid) and (2) polyaniline. The samples were homogeneous and well-integrated, characterized by FTIR and swelling assays. Additionally, the capacity of the hydrogel’s actuation, i.e., the capacity to generate stress, through controlled changes in the temperature and using an electrical stimulus was also tested. The hydrogels proved to be temperature sensitive and were able to generate a contraction stress when a temperature change was applied over a wide range of values, which include the low critical solution temperature (LCST) of poly(N-isopropylacrylamide). The application of an electric field enabled the production of a contraction stress other than that generated by thermosensitivity. Regarding the hydrogel pH sensitivity, the hydrogels showed lower levels of swelling when in contact with low pH solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAc:

Acrylic acid

FTIR:

Fourier transform infrared spectroscopy

LCST:

Lower critical solution temperature

NIPAM:

N–isopropylacrylamide

PANI:

polyaniline

PEGDA:

poly(ethylene glycol diacrylate)

PNIPAM:

poly(N-isopropylacrylamide)

References

  1. Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) J Mater Chem B 1:2682–2695

    Article  CAS  Google Scholar 

  2. Celine PB, Antoine V, Denis B, Laurent V, Laurent D, Catherine F (2013) J Appl Polym Sci 128:2945–2953

    Article  CAS  Google Scholar 

  3. Hu J, Liu S (2010) Macromolecules 43:8315–8330

    Article  CAS  Google Scholar 

  4. Kim KJ, Tadokoro S (2007) Electroactive polymers for Robotic Applications: Artificial Muscles and Sensors. Springer, London

    Book  Google Scholar 

  5. Barisci JN, Lewis TW, Spinks GM, Too CO, Wallace GG (1998) J Intel Mat Sys Struc 9:723–731

    Article  CAS  Google Scholar 

  6. Wang F, Lai YH, Han MY (2004) Macromolecules 37:3222–3230

    Article  CAS  Google Scholar 

  7. Ruiz L, Garay MT, Laza JM, Vilas JL, Hernandez JR, Labrugere C, Leon LM (2013) Eur Polym J 49:130–138

    Article  CAS  Google Scholar 

  8. Meng H, Hu J (2010) J Intel Mat Syst Struct 21:859–885

    Article  CAS  Google Scholar 

  9. Ismail YA, Martínez JG, Al Harrasi AS, Kim SJ, Otero TF (2011) Sensors Actuators B 160:1180–1190

    Article  CAS  Google Scholar 

  10. Ahn SK, Kasi RM, Kim SC, Sharma N, Zhou Y (2008) Soft Matter 4:1151–1157

    Article  CAS  Google Scholar 

  11. Hu L, Sarker AK, Islam MR, Li X, Lu Z, Serpe MJ (2013) J Polym Sci: Polymer Chemistry 51:3004–3020

    Article  CAS  Google Scholar 

  12. Fathi M, Entezami AA, Pashaei-Asl R (2013) J Polym Res 20:125

    Article  Google Scholar 

  13. Bardajee GR, Hooshyar Z (2013) J Polym Res 20:67

    Article  Google Scholar 

  14. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) J Polym Res 19:9952

    Article  Google Scholar 

  15. Buenger D, Topuz F, Groll J (2012) Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  16. Chao G, Deng HX, Huang Q, Jia WJ, Huang WX, Gu YC, Tan HP, Fan LY, Liu CB, Huang AL (2006) J Polym Res 13:349–355

    Article  CAS  Google Scholar 

  17. Zao SP, Li LY, Cao MJ, Xu WL (2011) Polym Bull 66:1075–1087

    Article  Google Scholar 

  18. Gopischetty V, Tokarev I, Minko S (2012) J Mater Chem 22:19482–19487

    Article  Google Scholar 

  19. Sahoo A, Ramasubramani KRT, Jassal M, Agrawal AK (2007) Eur Polym J 43:1065–1076

    Article  CAS  Google Scholar 

  20. Ruck B (2011) J, Kemmitt T. Mat Sci Forum 700:129–132

    Article  Google Scholar 

  21. Marra SP, Ramesh KT, Douglas AS (2002) Phil Trans R Soc Lond A: Math Phys and Eng Sci 360:175–198

    Article  CAS  Google Scholar 

  22. Jie ZL (2012) Adv Mater Res 503:888–891

    Google Scholar 

  23. Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP (2012) J Appl Phys 112:041101

    Article  Google Scholar 

  24. Guenther M, Gerlach G, Wallsmerspergerger T, Solzbacher F, Magda J J, Lin G, Tathireddy P, Orthner MP (2011) Proceedings of SPIE – The International Society for Optical Engineering 7976, art. No. 79762D.

  25. Zhai D, Liu B, Shi Y, Pan L, Wang Y (2013) Li Wenbo, Zhang R, Yu, G. ACS Nano 7:3540–3546

    Article  CAS  Google Scholar 

  26. Shoa T, Mirfakhrai T, Madden JDW (2010) Synth Met 160:1280–1286

    Article  CAS  Google Scholar 

  27. Neoh KG, Kang ET (2010) MRS Bull 35:673–681

    Article  CAS  Google Scholar 

  28. Kouhi M, Mohebbi A, Mirzaei M, Peikari M (2013) Prog In Org Coat 76:1006–1015

    Article  CAS  Google Scholar 

  29. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM (2010) J Sep Pur Tech 75:229–242

    Article  CAS  Google Scholar 

  30. Nisar A, Afzulpurkara AN, Banchon AN (2008) Sens and Act B: Chem 130:917–942

    Article  CAS  Google Scholar 

  31. Mercedes V, Brett P (2010) Anal Chim Acta 668:100–113

    Article  Google Scholar 

  32. Conzuelo LV, Arias-Pardilha J, Cauich-Rodriguez JV, Smit MA, Otero TF (2010) Sensors 10:2638–2674

    Article  CAS  Google Scholar 

  33. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Biogeosciences 14:297–301

    CAS  Google Scholar 

  34. O’Shea JP, Qiao GG, Franks GV (2011) J Coll and Inter Sci 360:61–70

    Article  Google Scholar 

  35. Marques NN, Curti SP, Maia AMS, Balaban RC (2013) J Appl Polym Sci 129:334–345

    Article  Google Scholar 

  36. Halliday D, Resnick R, Krane KS (1992) Physics Fourth Edition. Wiley, New Jersey

    Google Scholar 

  37. Ding X, Fries D, Jun B (2006) Polymer 47:4718–4725

    Article  CAS  Google Scholar 

  38. Shin BC, Jhon MS, Lee HB, Yuk SH (1998) Eur Polym J 34:1675–1681

    Article  CAS  Google Scholar 

  39. Rzaev ZMO, Dinçer S, Piskin E (2007) Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support received from CAPES, CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo L. Oréfice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.B.J., Oréfice, R.L. Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J Polym Res 21, 466 (2014). https://doi.org/10.1007/s10965-014-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0466-8

Keywords

Navigation