Skip to main content
Log in

The effect of expanded graphite on the flammability and thermal conductivity properties of phase change material based on PP/wax blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The study reports on the flammability, thermal stability, impact properties and thermal conductivity of shape-stabilized phase change materials based on a soft Fischer–Tropsch paraffin wax blended with polypropylene (PP). The blends were melt-mixed with expanded graphite (EG) up to 9 wt% to improve the thermal conductivity and flammability resistance of the material. The thermal stability and flammability results show an increase in thermal stability and flame resistance of PP in the presence of EG, with the flammability further increasing in the presence of wax, probably because of the smaller and better dispersed EG particles in the PP/wax/EG composite that gave rise to a more compact char layer. Although the thermal degradation mechanism did not change in the presence of EG, the EG particles retarded the evolution of the volatile degradation products. The storage modulus of the PP/wax/EG composite was lower than those of PP and PP/EG, and decreased with increasing in wax content because of the softening effect of the wax. The impact strength of the PP/wax/EG composites increased with increasing EG content in all the samples, but decreased with increasing wax content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Song G, Ma S, Tang G, Yin Z, Wang X (2010) Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy 35:2179–2183. doi:10.1016/j.energy.2010.02.002

    Article  CAS  Google Scholar 

  2. Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283. doi:10.1016/S1359-4311(02)00192-8

    Article  CAS  Google Scholar 

  3. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11:1913–1965. doi:10.1016/j.rser.2006.05.005

    Article  CAS  Google Scholar 

  4. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615. doi:10.1016/j.enconman.2003.09.015

    Article  CAS  Google Scholar 

  5. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. doi:10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  6. Luyt AS, Krupa I (2009) Phase change materials formed by UV curable epoxy matrix and Fischer-Tropsch paraffin wax. Energy Convers Manag 50:57–61. doi:10.1016/j.enconman.2008.08.026

    Article  CAS  Google Scholar 

  7. Mngomezulu ME, Luyt AS, Krupa I (2011) Structure and properties of phase change materials based on high density polyethylene, hard Fischer-Tropsch paraffin wax, and wood flour. Polym Compos 32:1155–1163. doi:10.1002/pc.21134

    Article  CAS  Google Scholar 

  8. Xiao M, Feng B, Gong K (2002) Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag 43:103–1078. doi:10.1016/S0196-8904(01)00010-3

    Article  CAS  Google Scholar 

  9. Shaikh S, Lafdi K, Hallinan K (2008) Carbon nano-additives to enhance latent energy storage of phase change materials. J Appl Phys 103:094302. doi:10.1063/1.2903538

    Article  Google Scholar 

  10. Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43:3067–3074. doi:10.1016/j.carbon.2005.06.042

    Article  CAS  Google Scholar 

  11. Bonnet P, Siruede D, Garrier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotubes-polymer composites. Appl Phys Lett 91:201910. doi:10.1063/1.2813625

    Article  Google Scholar 

  12. Wang JF, Xie HQ, Zhong X (2008) Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys 104:113537. doi:10.1063/1.3041495

    Article  Google Scholar 

  13. Sari A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27:1271–1277. doi:10.1016/j.applthermaleng.2006.11.004

    Article  CAS  Google Scholar 

  14. Fukai J, Morozumi Y, Miyatake O (2003) Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiment and modelling. Int J Heat Mass Transf 46:4513–4525. doi:10.1016/S0017-9310(03)00290-4

    Article  CAS  Google Scholar 

  15. Zhang ZG, Fang XM (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag 47:303–310. doi:10.1016/j.enconman.2005.03.004

    Article  CAS  Google Scholar 

  16. Xu ZZ, Huang JQ, Chen MJ, Tan Y, Wang YZ (2013) Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym Degrad Stab 98:2011–2020. doi:10.106/j.polymdegradstab.2013.07.010

    Article  CAS  Google Scholar 

  17. Shao ZB, Deng C, Tan Y, Chen MJ, Chen L, Wang YZ (2014) Flame retardation of polypropylene via a novel intumescent flame retardant: ethylenediamine-modified ammonium polyphosphate. Polym Degrad Stab 106:88–96. doi:10.1016/j.polymdegrastab.2013.10.005

    Article  CAS  Google Scholar 

  18. Lei ZQ, Cao YM, Xie F, Ren H (2012) Study on surface modification and flame retardants properties of ammonium polyphosphate for polypropylene. J Appl Polym Sci 124:781–788. doi:10.1002/app.35064

    Article  CAS  Google Scholar 

  19. Zhang P, Hu Y, Song L, Ni J, Xing W, Wang J (2010) Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol Energy Mater Sol Cells 94:360–365. doi:10.1016/j.solmat.2009.10.014

    Article  CAS  Google Scholar 

  20. Lecouvet B, Sclavons M, Bailly C, Bourbigot S (2013) A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym Degrad Stab 98:2268–2281. doi:10.1016/j.polymdegrastab.2013.08.024

    Article  CAS  Google Scholar 

  21. Wu X, Wang L, Wu C, Yu J, Xie L, Wang G, Jiang P (2012) Influence of char residues on flammability of EVA/EG, EVA/NG and EVA/GO composites. Polym Degrad Stab 97:54–63. doi:10.1016/j.polymdegrastab.2011.10.011

    Article  CAS  Google Scholar 

  22. Ramani A, Dahoe AE (2014) On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym Degrad Stab 104:71–86. doi:10.1016/j.polymdegradstab.2014.03.021

    Article  CAS  Google Scholar 

  23. Li Z, Qu B (2003) Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free-retardant EVA blends. Polym Degrad Stab 81:401–408. doi:10.1016/S014-3910(03)00123-X

    Article  CAS  Google Scholar 

  24. Bai G, Guo C, Li L (2014) Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Constr Build Mater 50:148–153. doi:10.1016/j.conbuildmat.2013.09.028

    Article  Google Scholar 

  25. Chen X, Jiao C (2009) Synergistic effects of hydroxyl silicone oil on intumescent flame retardant polypropylene system. Fire Saf J 44:1010–1014. doi:10.1016/j.firesaf.2009.06.008

    Article  CAS  Google Scholar 

  26. Xia Y, Jing F, Mao Z, Guan Y, Zheng A (2014) Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stab 107:64–73. doi:10.1016/j.polymdegradstab.2014.04.016

    Article  CAS  Google Scholar 

  27. Cai Y, Song L, He Q, Yang D, Hu Y (2008) Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinylacetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Convers Manag 49:2055–2062. doi:10.1016/j.enconman.2008.02.013

    Article  CAS  Google Scholar 

  28. Cai Y, Wei Q, Huang F, Gao W (2008) Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy 85:7654–7775. doi:10.1016/j.apenergy.2007.10.017

    Article  Google Scholar 

  29. AlMaadeed MA, Labidi S, Krupa I, Karkri M (2015) Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochim Acta 600:35–44. doi:10.1016/j.tca.2014.11.023

    Article  CAS  Google Scholar 

  30. Ye L, Qu B (2008) Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends. Polym Degrad Stab 93:918–924. doi:10.1016/j.polymdegradstab.2008.02.002

    Article  CAS  Google Scholar 

  31. Zhang P, Song L, Lu H, Wang J, Hu Y (2010) The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers Manag 51:2733–2737. doi:10.1016/j.enconman.2010.06.003

    Article  CAS  Google Scholar 

  32. Fawn UM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84. doi:10.1016/j.polymdegradstab.2005.01.004

    Article  Google Scholar 

  33. Wang X, Rathore R, Songtipya P, Gasco MDMJ, Manias E, Wilkie CA (2011) EVA-layered double hydroxide (nano) composites: mechanism of fire retardancy. Polym Degrad Stab 96:301–313. doi:10.1016/j.polymdegradstab.2011.10.011

    Article  CAS  Google Scholar 

  34. Li Y, Li B, Dai J, Jia H, Gao S (2008) Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polym Degrad Stab 93:9–16. doi:10.1016/j.polymdegradstab.2007.11.002

    Article  CAS  Google Scholar 

  35. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and polypropylene. Macromol Chem Phys 202:775–784. doi:10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

    Article  CAS  Google Scholar 

  36. Kim S, Do I, Drzal LT (2010) Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym Compos 31:755–761. doi:10.1002/pc.20781

    Article  CAS  Google Scholar 

  37. Mhike W, Focke WW, Mofokeng JP, Luyt AS (2012) Thermally conductive phase change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite. Thermochim Acta 527:75–82. doi:10.1016/j.tca.2011.10.008

    Article  CAS  Google Scholar 

  38. Palacios J, Perera R, Rosales C, Albano C, Pastor JM (2012) Thermal degradation kinetics of PP/OMMT nanocomposites with mPE and EVA. Polym Degrad Stab 97:729–737. doi:10.1016/j.polymdegradstab.2012.02.009

    Article  CAS  Google Scholar 

  39. Gogoi P, Boruah M, Bora C, Dolui SK (2014) Jatropha curcas oil alkyd/epoxy resin/expanded graphite (EG) reinforced bio-composite: evaluation of the thermal, mechanical and flame retardancy properties. Prog Org Coat 77:87–93. doi:10.1016/j.porgcoat.2013.08.006

    Article  CAS  Google Scholar 

  40. Chen B, Evans JRG (2009) Impact strength of polymer-clay nanocomposites. R Soc Chem 5:3572–3584. doi:10.1039/b902073j

    CAS  Google Scholar 

  41. Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–372. doi:10.1016/j.carbon.2012.08.068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Foundation of South Africa is acknowledged for financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Luyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochane, M.J., Luyt, A.S. The effect of expanded graphite on the flammability and thermal conductivity properties of phase change material based on PP/wax blends. Polym. Bull. 72, 2263–2283 (2015). https://doi.org/10.1007/s00289-015-1401-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1401-9

Keywords

Navigation