Skip to main content
Log in

Flammability and thermal analysis of thermoplastic polyurethane/DOPO derivative/sepiolite composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane was an important polymer and widely used in many fields. However, poor fire performance significantly inhibits its further application. In this study, the flammability, thermal and mechanical properties of thermoplastic polyurethane (TPU)/DOPO derivative (DiDOPO)/sepiolite composites, fabricated by a melt blending process, were examined based on the sepiolite content. TPUSEP3 has achieved UL-94 V0 classes and LOI 34.4%. Micro-scale combustion calorimeter shows that TPU/DiDOPO/sepiolite composites possess an excellent fire performance. Flexural strength of TPUSEP3 has enhanced to 48.3 MPa which indicated the rigidity of composites has significantly improved. In addition, the scanning electronic microscopy images of the external surface of the carbon layer of composites show a very compact structure. Sepiolite and DiDOPO change the decomposition process of composites lead to the decrease of Ea values of TPU/DiDOPO/sepiolite composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang A, Peng XF, Turng LS. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: effect on rheological behavior, mechanical properties, and microcellular foamability. Polymer. 2018;134:263–74.

    Article  CAS  Google Scholar 

  2. Mi HY, Jing X, Salick MR, Turng LS, Peng XF. Fabrication of thermoplastic polyurethane tissue engineering scaffolds by combining microcellular injection molding and particle leaching. J Mater Res. 2014;29:911–22.

    Article  CAS  Google Scholar 

  3. Herrera M, Matuschek G, Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stab. 2002;78:323–31.

    Article  CAS  Google Scholar 

  4. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat Sci Eng R. 2009;63:100–25.

    Article  Google Scholar 

  5. Bourbigot S, Turf T, Bellayer S, Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab. 2009;94:1230–7.

    Article  CAS  Google Scholar 

  6. Dike A, Tayfun U, Dogan M. Influence of zinc borate on flame retardant and thermal properties of polyurethane elastomer composites containing huntite-hydromagnesite mineral. Fire Mater. 2017;41:890–7.

    Article  CAS  Google Scholar 

  7. Duquesne S, Bras M, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T, Vezin H. Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci. 2001;82:3262–74.

    Article  CAS  Google Scholar 

  8. Chen XL, Feng XL, Jiao CM. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J Therm Anal Calorim. 2017;129:851–7.

    Article  CAS  Google Scholar 

  9. Sut A, Metzsch-Zilligen E, Grosshauser M, Pfaendner R, Schartel B. Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym Testing. 2019;74:196–204.

    Article  CAS  Google Scholar 

  10. Xu Y, Chen M, Ning X, Chen X. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. J Therm Anal Calorim. 2014;115:689–95.

    Article  CAS  Google Scholar 

  11. Yu B, Tawiah B, Wang LQ, Yuen ACY, Zhang ZC, Shen LL, Lin B, Fei B, Yang W, Li A. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J Hazard Mater. 2019;374:110–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bidsorkhi HC, Soheilmoghaddam M, Pour RH, Adelnia H, Mohamad Z. Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing. 2014;37:117–22.

    Article  CAS  Google Scholar 

  13. Marofoi BB, Garas S, Bodzay B, Zubonyai F, Marosi G. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix. Polym Advan Technol. 2008;19:693–700.

    Article  Google Scholar 

  14. Vahabi H, Lin Q, Vagner C, Cochez M, Ferriol M, Laheurte P. Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMT. Polym Degrad Stab. 2016;124:60–7.

    Article  CAS  Google Scholar 

  15. Zhan Z, Xu M, Li B. Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites. Polym Degrad Stab. 2015;117:66–74.

    Article  CAS  Google Scholar 

  16. Cárdenas M, López D, Vilchez A, Fernandez JF, Merino JC, Pastor JM. Synergy between organo-bentonite and nanofillers for polymer based fire retardant applications. Appl Clay Sci. 2009;45:139–46.

    Article  Google Scholar 

  17. Zaini N, Ismail H, Rusli A. Tensile, thermal, fammability and morphological properties of sepiolite filled ethylene propylene diene monomer (EDPM) rubber composites. Iran Polym J. 2018;27:287–96.

    Article  Google Scholar 

  18. Tang G, Deng D, Chen J, Zhou KQ, Zhang H, Huang XJ, Zhou ZJ. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130:763–72.

    Article  CAS  Google Scholar 

  19. Liu Y, Kong QH, Zhao XM, Zhu P, Wang DY. Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym Advan Technol. 2017;28:971–8.

    Article  CAS  Google Scholar 

  20. Zhang JH, Kong QH, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376–86.

    Article  CAS  Google Scholar 

  21. Kong QH, Wu T, Zhang JH, Wang DY. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136.

    Article  CAS  Google Scholar 

  22. Chang QF, Long LJ, He WT, Qin SH, Yu J. Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim Acta. 2016;639:84–90.

    Article  CAS  Google Scholar 

  23. Wang P, Cai Z. Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism. Polym Degrad Stab. 2017;137:138–50.

    Article  CAS  Google Scholar 

  24. König A, Kroke E. Methyl-DOPO-a new flame retardant for flexible polyurethane foam. Polym Advan Technol. 2011;22:5–13.

    Article  Google Scholar 

  25. König A, Kroke E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam. Fire Mater. 2012;36:1–5.

    Article  Google Scholar 

  26. Salmeia K, Gaan S. An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications. Polym Degrad Stab. 2015;113:119–34.

    Article  CAS  Google Scholar 

  27. Xie MC, Zhang SM, Ding YF, Wang F, Liu P, Tang HY, Wang YT, Yang MS. Synthesis of a heat-resistant DOPO derivative and its application as flame-retardant in engineering plastics. J Appl Polym Sci. 2017;22:44892.

    Google Scholar 

  28. Yan W, Zhang M, Yu J, Nie SQ, Zhang DQ, Qin SH. Synergistic flame-retardant effect of epoxy resin combined with phenethyl-bridged DOPO derivative and graphene nanosheets. Chinese J Polym Sci. 2019;37:79–88.

    Article  CAS  Google Scholar 

  29. Yan W, Yu J, Zhang MQ, Qin SH, Wang T, Huang WJ, Long LJ. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017;7:46236–45.

    Article  CAS  Google Scholar 

  30. Huang NH, Chen ZJ, Wang JQ, Wei P. Synergistic effects of sepiolite on intumescent flame retardant polypropylene. Express Polym Lett. 2010;4:743–52.

    Article  CAS  Google Scholar 

  31. Jiang P, Zhang S, Bourbigot S, Chen ZL, Duquesne S, Casetta M. Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym Degrad Stab. 2019;165:68–79.

    Article  CAS  Google Scholar 

  32. Pan Y, Liu L, Cai W, Hu Y, Jiang SD, Zhao HT. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl Clay Sci. 2019;168:230–6.

    Article  CAS  Google Scholar 

  33. Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J. 2016;76:196–207.

    Article  CAS  Google Scholar 

  34. Bidsorkhi H, Mohamad Z. Effect of sepiolite content on mechanical and flammability properties of ethylene vinyl acetate nanocomposite. Advan Mater Res. 2014;970:259–62.

    Article  Google Scholar 

  35. Laoutid F, Persenaire O, Bonnaud L, Dubois P. Flame retardant polypropylene through the joint action of sepiolite and polyamide 6. Polym Degrad Stab. 2013;98:1972–80.

    Article  CAS  Google Scholar 

  36. Zhou Y, He WD, Wang N, Xu DH, Chen XL, He M, Guo JB. Thermoplastic polyurethane/polytetrafluoroethylene/bridged dopo derivative composites: flammability, thermal stability, and mechanical properties. Polym Eng Sci. 2019;59:1593–602.

    Article  CAS  Google Scholar 

  37. Menachem L. Flame retarding polymer nanocomposites: synergism, cooperation, antagonism. Polym Degrad Stab. 2011;96:256–69.

    Article  Google Scholar 

  38. Menachem L. Synergistic and catalytic effects in flame retardancy of polymeric materials-an overview. J Fire Sci. 1999;17:3–19.

    Article  Google Scholar 

  39. Marosfoi B, Garas S, Bodzay B, Zubonyai F, Marosi G. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix. Polym Advan Technol. 2008;19:693–700.

    Article  CAS  Google Scholar 

  40. Qiao H, Chao M, Hui D, Liu J, Zheng JC, Lei WW, Zhou XX, Wang RG, Zhang LQ. Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent. Compos Part B-Eng. 2017;114:356–64.

    Article  CAS  Google Scholar 

  41. Du XJ, Li XD, Zou MS, Yang RJ, Pang SP. Thermal kinetic study of 1-amino-1, 2, 3-triazolium nitrate. J Thermal Anal Calorim. 2014;2:1195–203.

    Article  Google Scholar 

  42. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol JJ. ICTAC kinetics committee recommendations for collecting thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  43. Vargas AF, Orozco VH, Rault F, Giraud S, Devaux E, Lopez BL. Influence of fiber-like nanofillers on the rheological, mechanical, thermal and fire properties of polypropylene: an application to multifilament yarn. Compos Part A Appl S. 2010;41:1797–806.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports by Science and Technology Project of Guizhou (2019/2026), Fundamental Research Key Project of Guizhou Province (NO. 20201Z044), The Guizhou Science Fund for Excellent Young Scholars (20195665), Open Fund Program of Southwest University of Science and Technology (No. 18zxgk01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Xie or Jianbing Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., He, M., Xie, L. et al. Flammability and thermal analysis of thermoplastic polyurethane/DOPO derivative/sepiolite composites. J Therm Anal Calorim 147, 8225–8234 (2022). https://doi.org/10.1007/s10973-021-11105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11105-6

Keywords

Navigation