Skip to main content
Log in

Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of different concentrations of polyethylene-grafted-maleic anhydride (PE-g-MAH) in recycled high-density polyethylene/water hyacinth fiber (rHDPE/WHF) composites was studied. RHDPE/WHF composites with different concentrations of PE-g-MAH were prepared using Z-blade mixer at 180 °C with the rotor speed of 50 rpm. The results indicated 6 wt% of PE-g-MAH showed the highest tensile strength and Young’s modulus but lowest water absorption compared to other concentration of PE-g-MAH. The SEM morphology of 6 wt% of PE-g-MAH displayed better fiber dispersion and less fiber pull out than other concentration of PE-g-MAH. Moreover, FTIR analysis also showed the presence of ester carbonyl group and reduction of OH group in rHDPE/WHFPE-g-MAH composites than uncompatibilized composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. United States Environmental Protection Agency (EPA) (2013) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2011, EPA530-R-13-001. http://www.epa.gov

  2. Nabi SD, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363

    Article  Google Scholar 

  3. Saxena M, Pappu A, Sharma A, Haque R, Wankhede S (2011) Composite materials from natural resources: recent trends and future potentials. In: Dr. PavlaTesinova (Ed.), Advances in composite materials-analysis of natural and man-made materials. Europe: In Tech. doi:10.5772/18264

  4. Malkapuram R, Kumar V, Yuvraj SN (2008) Recent development in natural fibre reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  Google Scholar 

  5. Nguong CW, Lee SNB, Sujan D (2013) A review on natural fibre reinforced polymer composites. P Indian As Eng Sci 73:1123–1130

    Google Scholar 

  6. La Mantia FP, Morreale M (2006) Mechanical properties of recycled polyethylene ecocomposites filled with natural organic fillers. Polym Eng Sci 46:1131–1139

    Article  Google Scholar 

  7. Bhattacharya A, Kumar P (2010) Water hyacinth as a potential biofuel crop. J Agr Food Chem 9:112–122

    CAS  Google Scholar 

  8. Supri AG, Lim BY (2009) Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. J Phys Sci 20:85–96

    Google Scholar 

  9. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  10. Bolenz S, Omran H, Gierschner K (1990) Treatments of water hyacinth tissue to obtain useful products. Biol Wastes 33:263–274

    Article  Google Scholar 

  11. Tan SJ, Supri AG, Teh PL (2013) Effect of PE-g-MAH as compatibilizer on properties of LDPE/NR/WHF composites. AMM 284:87–93

    Article  Google Scholar 

  12. Elisa Z, Mariastella S (2011) Green composites: an overview. Polym Compos 32:1905–1915

    Article  Google Scholar 

  13. Supri AG, Lim BY (2009) Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. J Phys Sci 20:85–96

    Google Scholar 

  14. Belgacem MN, Gandini A (2005) Surface modification of cellulose fibres. Polím Ciência e Tecnol 15:114–121

    Article  CAS  Google Scholar 

  15. Zhang F, Endo T, Qiu W, Yang L, Hirotsu T (2002) Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene. J Appl Polym Sci 84:1971–1980

    Article  CAS  Google Scholar 

  16. Huang JW, Lu WC, Yeh MY, Lin CH, Tsai IS (2008) Unusual thermal degradation of maleic anhydride grafted polyethylene. Polym Eng Sci 48:1550–1554

    Article  CAS  Google Scholar 

  17. Rohani AM, Hanafi I, Razaina MT (2010) Effects of polyethylene-g-maleic anhydride on properties of low density polyethylene/thermoplastic sago starch reinforced kenaffibre composites. Iran Polym J 19:501–510

    Google Scholar 

  18. Supri AG, Ismail H, Shuhadah S (2010) Effect of polyethylene-grafted maleic anhydride (PE-g-MAH) on properties of low density polyethylene/eggshell powder (LDPE/ESP) composites. Polym Plast Technol 49:347–353

    Article  CAS  Google Scholar 

  19. Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27:801–806

    Article  CAS  Google Scholar 

  20. Li S, Wang C, Chu F, Xia J, Xu Y (2013) Effects of compatibilizers on composites of acorn shell powder and low density polyethylene. Bioresources 8:5817–5825

    Google Scholar 

  21. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A Appl S 38:1473–1482

    Article  Google Scholar 

  22. Song YM, Wang QW, Han GP, Wang HG, Gao H (2010) Effects of two modification methods on the mechanical properties of wood flour/recycled plastic blends composites: addition of thermoplastic elastomer SEBS-g-MAH and in situ grafting MAH. J Forest Res 21:373–378

    Article  CAS  Google Scholar 

  23. Fauzani MS, Aziz H, Rosiyah Y, Ruth LA, Ahmad DA, MohdNazarul ZMN (2014) Improvement in the mechanical performance and interfacial behavior of kenaf fiber reinforced high density polyethylene composites by the addition of maleic anhydride grafted high density polyethylene. J Polym Res 21:439–450

    Article  Google Scholar 

  24. Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/HDPE composites. Bioresources 5:316–323

    CAS  Google Scholar 

  25. Salleh F, Hassan A, Yahya R, Lafia-Araga R, Azzahari A, Nazir M (2014) Improvement in the mechanical performance and interfacial behavior of kenaf fiber reinforced high density polyethylene composites by the addition of maleic anhydride grafted high density polyethylene. J Polym Res 21:1–11

    Article  CAS  Google Scholar 

  26. Wang S, Yu J, Yu J (2005) Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion. Polym Int 54:279–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support for this work from the Fundamental Research Grant Scheme (FRGS 9003-00438) under Ministry of Education Malaysia (MOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S.J., Supri, A.G. & Chong, K.M. Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polym. Bull. 72, 2019–2031 (2015). https://doi.org/10.1007/s00289-015-1387-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1387-3

Keywords

Navigation