Skip to main content
Log in

Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, biocompatible magnetic Fe3O4/polyurethane elastomer nanocomposites were synthesized using in situ polymerization method. Pure Fe3O4 nanoparticles were synthesized by coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FTIR), vibrating sample magnetometer and transmission electron microscopy. The chemical structure, thermal properties, and mechanical properties of the Fe3O4/PU nanocomposites, as well as the evaluation of effect of nanoparticles content on thermal and mechanical properties, were studied by FTIR, thermogravimetric analyzer (TGA), dynamic mechanical thermal analysis (DMTA), and tensile analysis. The dispersion and morphology of the nanoparticles in the nanocomposites were studied by scanning electron microscopy (SEM) technique. SEM results confirmed that nanoparticles tend to be more agglomerated in polyurethane matrices with increasing of nanoparticles content. TGA analysis also showed a decrease in the thermal stability of Fe3O4/polyurethane nanocomposites compared to pure polyurethane, which was attributed to disruption of hydrogen bonds between polyurethane chains by Fe3O4 nanoparticles. DMTA results also showed an increase in glass transition temperature of Fe3O4/PU nanocomposites compared to pure polyurethane. Biocompatibility studies demonstrated that fabricated nanocomposites can be good candidates for biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barikani M, Barmar M (1996) Thermoplastic polyurethane elastomers: synthesis and study of effective structural parameters. Iran Polym J 5:231–235

    CAS  Google Scholar 

  2. Prisacariu C (2011) Polyurethane elastomers, from morphology to mechanical aspects. Springer, Wien

    Book  Google Scholar 

  3. Shimpi NG, Sonawane HA, Mali AD, Mishra S (2014) Effect of nAl(OH)3 on thermal, mechanical and morphological properties of millable polyurethane (MPU) rubber. Polym Bull 71:515–531

    Article  CAS  Google Scholar 

  4. Shimpi NG, Sonawane HA, Mali AD, Mishra S (2013) Effect of Mg(OH)2 nanoparticles on thermal, mechanical and morphological properties of millable polyurethane elastomer. J Reinf Plast Comp 32:935–946

    Article  Google Scholar 

  5. Gangopadhyay S, Hadjipanayis G, Shah S, Sorensen C, Klabunde K, Papaefthymiou V, Kostikas A (1991) Effect of oxide layer on the hysteresis behavior of fine Fe particles. J Appl Phys 70:5888–5890

    Article  CAS  Google Scholar 

  6. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  7. Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensor Actuator B-Chem 190:120–126

    Article  CAS  Google Scholar 

  8. Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467

    Article  CAS  Google Scholar 

  9. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244

    Article  CAS  Google Scholar 

  10. Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9:379–385

    Article  CAS  Google Scholar 

  11. Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4:329–338

    Article  CAS  Google Scholar 

  12. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem 16:1181–1188

    Article  CAS  Google Scholar 

  13. Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  Google Scholar 

  14. Mai Y, Yu Z (2006) Polymer nanocomposites. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  15. Zhou L, Li G, An T, Li Y (2010) Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res Chem Intermed 36:277–288

    Article  CAS  Google Scholar 

  16. Xu XX, Zheng YF (2006) Synthesis and characterization of magnetic nanoparticles and their reinforcement in polyurethane film. Key Eng Mater 324:659–662

    Article  Google Scholar 

  17. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444:227–235

    Article  Google Scholar 

  18. Pirmoradi FN, Cheng L, Chiao M (2009) A magnetic poly (dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:015032

    Article  Google Scholar 

  19. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Poly Adv Technol 20:550–557

    Article  CAS  Google Scholar 

  20. Huang X, Lu M, Zhang X, Wen G, Zhou Y, Fei L (2012) Carbon microtubes Fe3O4 nanocomposite with improved wave absorbing performance. Scripta Mater 67:613–616

    Article  CAS  Google Scholar 

  21. Santerre J, Woodhouse K, Laroche G, Labow R (2005) Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 26:7457–7470

    Article  CAS  Google Scholar 

  22. Yeganeh H, Barikani M, Noei Khodabadi F (2000) Synthesis and properties of novel thermoplastic poly (urethane-imide)s. Eur Polym J 36:2207–2211

    Article  CAS  Google Scholar 

  23. Hahn C, Keul H, Möller M (2012) Hydroxyl-functional polyurethanes and polyesters: synthesis, properties and potential biomedical application. Polym Int 61:1048–1060

    Article  CAS  Google Scholar 

  24. Liu P, Ye L, Liu Y, Nie F (2011) Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer. Polym Bull 66:503–515

    Article  CAS  Google Scholar 

  25. Ashjari M, Mahdavian AR, Ebrahimi NG, Mosleh Y (2010) Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J Inorg Organomet Polym 20:213–219

    Article  CAS  Google Scholar 

  26. Mohammadi A, Barikani M, Barmar M (2013) Effect of polyol structure on the properties of the resultant magnetic polyurethane elastomer nanocomposites. Polym Adv Technol 24:978–985

    Article  CAS  Google Scholar 

  27. Mohammadi A, Barikani M, Barmar M (2013) Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48:7493–7502

    Article  CAS  Google Scholar 

  28. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  29. Barikani M, Hepburn C (1986) Isocyanurate crosslinking as a means of producing thermally stable polyurethane elastomers. Cell Polym 5:169–185

    CAS  Google Scholar 

  30. Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Fe3O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313:293–299

    Article  CAS  Google Scholar 

  31. Hanifehpour Y, Mirtamizdoust B, Farzam AR, Joo SW (2012) Synthesis and crystal Sstructure of [Pb(phen)(μ-N3)(μ-NO3)]n and its thermal decomposition to PbO nanoparticles. J Magn Magn Mater 22:957–962

    CAS  Google Scholar 

  32. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  Google Scholar 

  33. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci 212:49–57

    Article  CAS  Google Scholar 

  34. Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450

    Article  CAS  Google Scholar 

  35. Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J Magn Magn Mater 308:210–213

    Article  CAS  Google Scholar 

  36. Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C et al (2007) Synthesis, characterization, and properties of novel polyetherester polyols and developed polyurethanes. J Appl Polym Sci 103:417–424

    Article  CAS  Google Scholar 

  37. Mulligan DR, Imrie CT, Larcey P (1996) Characterization of side-chain liquid crystal polymers using dynamic mechanical thermal analysis and dielectric thermal analysis. J Mater Sci 31:1985–1989

    Article  CAS  Google Scholar 

  38. Yeganeh H, Jamshidi H, Jamshidi S (2007) Synthesis and properties of novel biodegradable poly(ε-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers. Polym Int 56:41–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Iran polymer and petrochemical institute (IPPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Barikani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Barikani, M. & Barmar, M. Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym. Bull. 72, 219–234 (2015). https://doi.org/10.1007/s00289-014-1268-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1268-1

Keywords

Navigation