Skip to main content

Advertisement

Log in

Global stability for epidemic models on multiplex networks

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work, we consider an epidemic model in a two-layer network in which the dynamics of susceptible–infected–susceptible process in the physical layer coexists with that of a cyclic process of unaware–aware–unaware in the virtual layer. For such multiplex network, we shall define the basic reproduction number \(R_0^V\) in the virtual layer, which is similar to the basic reproduction number \(R_0^P\) defined in the physical layer. We show analytically that if \(R_0^P \le 1\) and \(R_0^V \le 1\), then the disease and information free equilibrium is globally stable and if \(R_0^P \le 1\) and \(R_0^V > 1\), then the disease free and information saturated equilibrium is globally stable for all initial conditions except at the origin. In the case of \(R_0^P > 1\), whether the disease dies out or not depends on the competition between how well the information is transmitted in the virtual layer and how contagious the disease is in the physical layer. In particular, it is numerically demonstrated that if the difference in \(R_0^V\) and \(R_0^P\) is greater than the product of \(R_0^P\), the deviation of \(R_0^V\) from 1 and the relative infection rate for an aware susceptible individual, then the disease dies out. Otherwise, the disease breaks out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications. Griffin, London

    MATH  Google Scholar 

  • Balcan D, Vespignani A (2011) Phase transitions in contagion processes mediated by recurrent mobility patterns. Nat Phys 7:581–586

    Article  Google Scholar 

  • Boccaletti S, Bianconi G, Criado R, del Genio C, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544:1–122

    Article  MathSciNet  Google Scholar 

  • Boguñá M, Pastor-Satorras R (2002) Epidemic spreading in correlated complex networks. Phys Rev E 66:047104

    Article  Google Scholar 

  • Britton T, Neal P (2010) The time to extinction for a stochastic SIS-household-epidemic model. J Math Biol 61:763

    Article  MathSciNet  MATH  Google Scholar 

  • Cozzo E, Arenas A, Moreno Y (2012) Stability of boolean multilevel networks. Phys Rev E 86:036115

    Article  Google Scholar 

  • Dezső Z, Barabási AL (2002) Halting viruses in scale-free networks. Phys Rev E 65:055103

    Article  Google Scholar 

  • Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface 7:1247–1256

    Article  Google Scholar 

  • Funka S, Gilada E, Watkinsb C, Jansena VAA (2009) The spread of awareness and its impact on epidemic outbreaks. Proc Natl Acad Sci USA 106:6872–6877

    Article  Google Scholar 

  • Gómez S, Diaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente CJ, Moreno Y, Arenas A (2013) Diffusion dynamics on multiplex networks. Phys Rev Lett 110:028701

    Article  Google Scholar 

  • Grabowski A, Kosiński RA (2004) Epidemic spreading in a hierarchical social network. Phys Rev E 70:031908

    Article  Google Scholar 

  • Granell C, Gómez S, Arenas A (2013) Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys Rev Lett 111:128701

    Article  Google Scholar 

  • Granell C, Gómez S, Arenas A (2014) Competing spreading processes on multiplex networks: awareness and epidemics. Phys Rev E 90:012808

    Article  Google Scholar 

  • Gross T, D’Lima CJD, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96:208701

    Article  Google Scholar 

  • Guo Q, Jiang X, Lei Y, Li M, Ma Y, Zheng Z (2015) Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys Rev E 91:012822

    Article  Google Scholar 

  • Juang J, Liang YH (2015a) Analysis of a general SIS model with infective vectors on the complex networks. Physica A 437:382–395

    Article  MathSciNet  Google Scholar 

  • Juang J, Liang YH (2015b) The impact of vaccine success and awareness on epidemic dynamics. Chaos 26:113105

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling MJ, Eames KTD (2005) Networks and epidemic models. J R Soc Interface 2:295–307

    Article  Google Scholar 

  • Korobeinikov A, Wake GC (2002) Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett 15:955–960

    Article  MathSciNet  MATH  Google Scholar 

  • Lajmanovich A, Yorke JA (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28:221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Liang YH, Juang J (2015) The impact of vaccine failure rate on epidemic dynamics in responsive networks. Chaos 25:043116

    Article  MathSciNet  MATH  Google Scholar 

  • May RM, Lloyd AL (2001) Infection dynamics on scale-free networks. Phys Rev E 64:066112

    Article  Google Scholar 

  • Meloni S, Perra N, Arenas A, Gómez S, Moreno Y, Vespignani A (2011) Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci Rep 1:62

    Article  Google Scholar 

  • Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B 26:521–529

    Google Scholar 

  • Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878

    Article  MathSciNet  MATH  Google Scholar 

  • Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128

    Article  MathSciNet  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63:066117

    Article  Google Scholar 

  • Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci USA 107(31):13636–13641

    Article  Google Scholar 

  • Wang Z, Wang L, Perc M (2014a) Degree mixing in multilayer networks impedes the evolution of cooperation. Phys Rev E 89:052813

    Article  Google Scholar 

  • Wang Z, Zhang H, Wang Z (2014b) Multiple effects of self-protection on the spreading of epidemics. Chaos Solitons Fractals 61:1–7

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Q, Fu X, Small M, Xu XJ (2012) The impact of awareness on epidemic spreading in networks. Chaos 22:013101

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Q, Zhang H, Zeng G (2014) Responsive immunization and intervention for infectious diseases in social networks. Chaos 24:023108

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Science and Technology, Taiwan (Grant No. 105-2115-M-009-002-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonq Juang.

Appendix: A The derivation of model (1)

Appendix: A The derivation of model (1)

In this section, we derive the formulation of model (1). The discrete-time disease transmission model in Granell et al. (2013), based on the MMCA reads as follows.

$$\begin{aligned} \begin{aligned} p_i^{AI}(t+1)&= p_i^{AI}(t) (1-\mu ) + r_i^{US}(t) \left\{ [1-\gamma _i(t)] \left[ 1 - q_i^A(t)\right] + \gamma _i(t) \left[ 1 - q_i^U(t)\right] \right\} \\&\quad + q_i^{AS}(t) \left\{ \delta \left[ 1 - q_i^U(t)\right] + (1-\delta ) \left[ 1 - q_i^A(t)\right] \right\} \\&=: p_i^{AI}(t) (1-\mu ) + r_i^{US}(t) \, \text {Prob}(US\rightarrow AI) + q_i^{AS}(t) \, \text {Prob}(AS\rightarrow AI) \\ q_i^{AS}(t+1)&= p_i^{AI}(t)(1-\delta )\mu + r_i^{US}(t) [1-\gamma _i(t)] q_i^A(t) + q_i^{AS}(t) (1-\delta ) q_i^A(t),\\&=: p_i^{AI}(t)(1-\delta )\mu + r_i^{US}(t) \, \text {Prob}(US\rightarrow AS) + q_i^{AS}(t) \, \text {Prob}(AS\rightarrow AS),\\ r_i^{US}(t+1)&= p_i^{AI}(t)\delta \mu + r_i^{US}(t) \gamma _i(t)q_i^U(t) + q_i^{AS}(t) \delta q_i^U(t) \\&=: p_i^{AI}(t)\delta \mu + r_i^{US}(t) \, \text {Prob}(US\rightarrow US) + q_i^{AS}(t) \, \text {Prob}(AS\rightarrow US), \end{aligned} \end{aligned}$$
(17)

where

$$\begin{aligned} \begin{aligned} \gamma _i(t)&= \prod _{j\ne i} [ 1 - a_{ij} p_j^{AI} (t) \lambda ],\\ q_i^A(t)&= \prod _{j\ne i} [ 1 - b_{ij} p_j^{AI} (t) \beta ^A ],\\ q_i^U(t)&= \prod _{j\ne i} [ 1 - b_{ij} p_j^{AI} (t) \beta ^U ]. \end{aligned} \end{aligned}$$
(18)

Assuming the absence of dynamical correlation, \(\gamma _i(t)\) is the transition probability at time t for individual i who is not being informed by any neighbors. Moreover, \(q_i^A(t)\) (resp., \(q_i^U(t)\)) is probability at time t of an aware (resp., unaware) individual i not being infected by any neighbors. The second term \(r_i^{US}\{[1-\gamma _i(t)][1-q_i^A(t)] + \gamma _i(t)[1-q_i^U(t)]\}\) on the first equation of (17) represents the probability of an unaware and susceptible individual becoming infected. We denote this term by \(\text {Prob}(US\rightarrow AI)\). Similar notations are introduced in other terms in (17).

To derive the continuous version of disease transmission model (17), we first shorten the time interval for the iterations from \([t, t+1)\) to \([t, t+h)\) and then let h tend to 0. In the time interval \([t, t+h)\), we assume that all the parameters \(\lambda , \delta , \beta ^U, \beta ^A\) and \(\mu \) are replaced by \(\lambda h, \delta h, \beta ^U h, \beta ^A h\) and \(\mu h\), which means that the probabilities of those quantities depend linearly on the length of exposure. We shall write the resulting model as follows.

$$\begin{aligned} \begin{aligned} p_i^{AI}(t+h)&= p_i^{AI}(t) (1- \mu h) + r_i^{US}(t) \, \text {Prob}_h (US\rightarrow AI)\\&\quad + q_i^{AS}(t) \, \text {Prob}_h (AS\rightarrow AI), \\ q_i^{AS}(t+h)&= p_i^{AI}(t) (1- \delta h) \mu h + r_i^{US}(t) \, \text {Prob}_h (US\rightarrow AS)\\&\quad + q_i^{AS}(t) \, \text {Prob}_h (AS\rightarrow AS),\\ r_i^{US}(t+h)&= p_i^{AI}(t) \delta \mu h^2 + r_i^{US}(t) \, \text {Prob}_h (US\rightarrow US) \\&\quad + q_i^{AS}(t) \, \text {Prob}_h(AS\rightarrow US). \end{aligned} \end{aligned}$$
(19)

Moreover, for h sufficiently small, we have that

$$\begin{aligned} \begin{aligned} \text {Prob}_h(US\rightarrow AI)&= [ 1 - \gamma _i(t)] [1 - q_i^A(t)] + \gamma _i(t) [ 1 - q_i^U(t)] \\&= \left[ h \lambda \sum \limits _{j\ne i} a_{ij} p_j^{AI}(t) + O(h^2) \right] \left[ h \beta ^A \sum \limits _{j\ne i} b_{ij} p_j^{AI}(t) + O(h^2) \right] \\&\quad + \left[ 1 - h \lambda \sum \limits _{j\ne i} a_{ij} p_j^{AI}(t) + O(h^2) \right] \\&\qquad \left[ h \beta ^U \sum \limits _{j\ne i} b_{ij} p_j^{AI}(t) + O(h^2) \right] \\&= h \beta ^U \sum \limits _{j\ne i} b_{ij} p_j^{AI}(t) + O(h^2). \end{aligned} \end{aligned}$$
(20)

Similarly,

$$\begin{aligned} \text {Prob}_h(AS\rightarrow AI)&= h \delta \left[ 1 - q_i^U(t)\right] + (1- h \delta ) \left[ 1 - q_i^A(t)\right] \nonumber \\&= \left[ h^2 \delta \beta ^U \sum \limits _{j\ne i} b_{ij} p_j^{AI}(t) + O(h^3)\right] \nonumber \\&\quad + (1 - h\delta ) \left[ h \beta ^A \sum \limits _{j\ne i} b_{ij} p_j^{AI} (t) + O(h^2) \right] \nonumber \\&= h \beta ^A \sum \limits _{j\ne i} b_{ij} p_j^{AI} (t) + O(h^2). \end{aligned}$$
(21)
$$\begin{aligned} \text {Prob}_h(US\rightarrow AS)&= h \lambda \sum \limits _{j\ne i} a_{ij} p_j^{AI}(t) + O(h^2). \end{aligned}$$
(22)
$$\begin{aligned} \text {Prob}_h(AS\rightarrow AS)&= (1-h\delta )q_i^A(t) = 1-h \left[ \delta + \beta ^A \sum \limits _{j\ne i} b_{ij} p_j^{AI}(t) \right] + O(h^2). \end{aligned}$$
(23)

Using (19)–(23) and letting h tend to 0, we get

$$\begin{aligned} \begin{aligned} \dot{p}_i^{AI}&= - p_i^{AI}\mu +\beta ^Ur_i^{US}\sum \limits _{j\ne i} b_{ij}p_j^{AI} +\beta ^Aq_i^{AS}\sum \limits _{j\ne i} b_{ij}p_j^{AI},\\ \dot{q}_i^{AS}&= p_i^{AI}\mu +\lambda r_i^{US}\sum \limits _{j\ne i} a_{ij}p_j^{AI}-\beta ^A q_i^{AS}\sum \limits _{j\ne i} b_{ij}p_j^{AI}-\delta q_i^{AS},\\ \dot{r}_i^{US}&= - r_i^{US}\left[ \lambda \sum \limits _{j\ne i} a_{ij}p_j^{AI} + \beta ^U \sum \limits _{j\ne i} b_{ij}p_j^{AI} \right] + \delta q_i^{AS}. \end{aligned} \end{aligned}$$
(24)

Using the assumption that \(p_i^{AI}+q_i^{AS}+r_i^{US}=1\), we arrive at Eqs. (1a) and (1b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YJ., Juang, J., Liang, YH. et al. Global stability for epidemic models on multiplex networks. J. Math. Biol. 76, 1339–1356 (2018). https://doi.org/10.1007/s00285-017-1179-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1179-5

Keywords

Mathematics Subject Classification

Navigation