Skip to main content

Advertisement

Log in

Analysis of a stochastic tri-trophic food-chain model with harvesting

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a tri-trophic stochastic food-chain model with harvesting. We first establish critical values between persistence in mean and extinction for each species. The results show that persistence and extinction of a species only depends on the demographic impacts of environmental stochasticity on the species and species at lower tropic levels; however, the mean abundance of a species depends on the impacts of environmental stochasticity at all trophic levels. Then we consider stability in distribution of the model. Finally, we provide a necessary and sufficient condition for existence of optimal harvesting strategy and give the optimal harvesting effort and maximum of sustainable yield. The results show that the optimal harvesting strategy is closely related to the stochastic noises in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez LHR, Shepp LA (1998) Optimal harvesting of stochastically fluctuating populations. J Math Biol 37:155–177

    Article  MathSciNet  MATH  Google Scholar 

  • Bao J, Yuan C (2012) Stochastic population dynamics driven by Lévy noise. J Math Anal Appl 391:363–375

    Article  MathSciNet  MATH  Google Scholar 

  • Barbalat I (1959) Systems dequations differentielles d’osci d’oscillations nonlineaires. Revue Roumaine de Mathematiques Pures et Appliquees 4:267–270

    MathSciNet  Google Scholar 

  • Bazaraa MS, Shetty CM (1979) Nonlinear programming. Wiley, New York

    MATH  Google Scholar 

  • Beddington JR, May RM (1977) Harvesting natural populations in a randomly fluctuating environment. Science 197:463–465

    Article  Google Scholar 

  • Braumann CA (2002) Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math Biosci 177&178:229–245

    Article  MathSciNet  MATH  Google Scholar 

  • Braumann CA (2007) Itô versus Stratonovich calculus in random population growth. Math Biosci 206:81–107

    Article  MathSciNet  MATH  Google Scholar 

  • Bruti-Liberati N, Platen E (2010) Monte Carlo simulation for stochastic differential equations. Fin Encyclopedia Quant. doi:10.1002/9780470061602.eqf13001

    MATH  Google Scholar 

  • Chesson PL (1978) Predator–prey theory and variability. Annu Rev Ecol Syst 9:323–347

    Article  Google Scholar 

  • Chesson PL (1982) The stabilizing effect of a random environment. J Math Biol 15:1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu CH, Hsu SB (1998) Extinction of top predator in a three level food-chain model. J Math Biol 37:372–380

    Article  MathSciNet  MATH  Google Scholar 

  • Clark CW (1976) Mathematical bioeconomics: the optimal management of renewal resources. Wiley, New York

    MATH  Google Scholar 

  • Connell J (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Nat 122:661–696

    Article  Google Scholar 

  • Crauel H, Gundlach M (1999) Stochastic dynamics. Springer, New York

    Book  MATH  Google Scholar 

  • Evans SN, Ralph P, Schreiber SJ, Sen A (2013) Stochastic population growth in spatially heterogeneous environments. J Math Biol 66:423–476

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman H, Waltman P (1977) Mathematical analysis of some three-species food-chain models. Math Biosci 33:257–276

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman H, Waltman P (1984) Persistence in models of three interacting predator–prey populations. Math Biosci 68:213–231

    Article  MathSciNet  MATH  Google Scholar 

  • Gard TC (1984) Persistence in stochastic food web models. Bull Math Biol 46:357–370

    Article  MathSciNet  MATH  Google Scholar 

  • Gard TC (1988) Introductions to stochastic differential equations. Marcel Dekker, New York

    MATH  Google Scholar 

  • Gard TC, Hallam TG (1979) Persistence in food webs-I Lotka–Volterra food chains. Bull Math Biol 41:877–891

    MathSciNet  MATH  Google Scholar 

  • Hastings A, Powell T (1991) Chaos in a three-species food chain. Ecology 72:896–903

    Article  Google Scholar 

  • Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic diffrential equations. SIAM Rev 43:525–546

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson V, Law R (1985) Permanent coexistence in general models of three interacting species. J Math Biol 21:285–298

    Article  MathSciNet  MATH  Google Scholar 

  • Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes. North Holland, Amsterdam

    MATH  Google Scholar 

  • Jiang D, Shi N (2005) A note on non-autonomous logistic equation with random perturbation. J Math Anal Appl 303:164–172

    Article  MathSciNet  MATH  Google Scholar 

  • Klebanoff A, Hastings A (1994) Chaos in three species food chains. J Math Biol 32:427–451

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov YA, De Feo O, Rinaldi S (2001) Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM J Appl Math 62:462–487

    Article  MathSciNet  MATH  Google Scholar 

  • Lande R, Engen S, Saeher BE (1995) Optimal harvesting of fluctuating populations with a risk of extinction. Am Nat 145:728–745

    Article  Google Scholar 

  • Li X, Mao X (2009) Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin Dyn Syst 24:523–545

    Article  MathSciNet  MATH  Google Scholar 

  • Li MY, Shuai Z (2010) Global-stability problem for coupled systems of differential equations on networks. J Differ Equ 248:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Su H, Wang K (2011) Global stability analysis for stochastic coupled systems on networks. Automatica 47:215–220

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Wang K (2010) Optimal harvesting policy for general stochastic Logistic population model. J Math Anal Appl 368:420–428

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M (2015) Optimal harvesting policy of a stochastic predator–prey model with time delay. Appl Math Lett 48:102–108

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Bai C (2014) Optimal harvesting policy of a stochastic food chain population model. Appl Math Comput 245:265–270

    MathSciNet  MATH  Google Scholar 

  • Liu M, Bai C (2015) Optimal harvesting of a stochastic logistic model with time delay. J Nonlinear Sci 25:277–289

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Ma Z (1991) The threshold of survival for system of two species in a polluted environment. J Math Biol 30:49–51

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Wang K (2013) Dynamics of a two-prey one-predator system in random environments. J Nonlinear Sci 23:751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Wang K, Wu Q (2011) Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull Math Biol 73:1969–2012

    Article  MathSciNet  MATH  Google Scholar 

  • Ludwig D (1975) Persistence of dynamical systems under random perturbations. SIAM Rev 17:605–640

    Article  MathSciNet  MATH  Google Scholar 

  • Ludwig D, Varah JM (1979) Optimal harvesting of a randomly fluctuating resource II: numerical methods and results. SIAM J Appl Math 37:185–205

    Article  MathSciNet  MATH  Google Scholar 

  • Lungu EM, Øksendal B (1997) Optimal harvesting from a population in a stochastic crowded environment. Math Biosci 145:47–75

    Article  MathSciNet  MATH  Google Scholar 

  • May RM (1975) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Moon JW (1970) Counting labelled tress. Canadian Mathematical Congress, Montreal

    Google Scholar 

  • Murray JD (2001) Mathematical biology I. An introduction, 3rd edn. Springer, New York

    Google Scholar 

  • Øendal B (1998) Stochastic differential equations: an introduction with applications, 5th edn. Springer, Berlin

    Book  Google Scholar 

  • Paine RT (1988) Food webs: road maps of interactions or grist for theoretical development? Ecology 69:1648–1654

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, New York

    Book  Google Scholar 

  • Prato D, Zabczyk J (1996) Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Roth G, Schreiber SJ (2014) Persistence in fluctuating environments for interacting structured populations. J Math Biol 69:1267–1317

    Article  MathSciNet  MATH  Google Scholar 

  • Rougharden J (1975) A simple model for population dynamics in stochastic environments. Am Nat 109:713–736

    Article  Google Scholar 

  • Ryan D, Hanson F (1986) Optimal harvesting of a logistic population in an environment with stochastic jumps. J Math Biol 24:259–277

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin W (1976) Principles of mathematical analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Schreiber SJ, Benaïm M, Atchadé KAS (2011) Persistence in fluctuating environments. J Math Biol 62:655–683

    Article  MathSciNet  MATH  Google Scholar 

  • Schreiber SJ (2012) Persistence for stochastic difference equations: a mini-review. J Differ Equ Appl 18:1381–1403

    Article  MathSciNet  MATH  Google Scholar 

  • Sridhara R, Watson R (1990) Stochastic three species systems. J Math Biol 28:595–607

    Article  MathSciNet  MATH  Google Scholar 

  • Song QS, Stockbridge R, Zhu C (2011) On optimal harvesting problems in random environments. SIAM J Control Optim 49:859–889

    Article  MathSciNet  MATH  Google Scholar 

  • Turelli M (1977) Random environments and stochastic calculus. Theor Popul Biol 12:140–178

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang C, Li W, Wang K (2015) Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks. IEEE Trans Neural Netw Learn Syst 26:1698–1709

    Article  MathSciNet  Google Scholar 

  • Zhang C, Li W, Wang K (2015) Graph-theoretic approach to stability of multi-group models with dispersal. Discrete Contin Dyn Syst Ser B 20:259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu C, Yin G (2009) On competitive Lotka–Volterra model in random environments. J Math Anal Appl 357:154–170

    Article  MathSciNet  MATH  Google Scholar 

  • Zou X, Li W, Wang K (2013) Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process. Appl Math Lett 26:170–174

    Article  MathSciNet  MATH  Google Scholar 

  • Zou X, Wang K (2014) Optimal harvesting for a Logistic population dynamics driven by a Lévy process. J Optim Theory Appl 161:969–979

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to Professor Sebastian Schreiber and anonymous referees for their careful reading and valuable comments, which led to an improvement of our paper. We also thank Dr. H.Qiu and Q.Wu for helping us to improve the English exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Liu.

Additional information

The National Natural Science Foundation of China (Nos. 11171081, 11301207 and 11571136), Project Funded by China Postdoctoral Science Foundation (2015M571349), Natural Science Foundation of Jiangsu Province (No. BK20130411), Natural Science Research Project of Ordinary Universities in Jiangsu Province (No. 13KJB110002), Qinglan Project of Jiangsu Province (2014), Science and Technology Support Plan Project of Huaian (HAR2015013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Bai, C. Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016). https://doi.org/10.1007/s00285-016-0970-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0970-z

Keywords

Mathematics Subject Classification

Navigation