Skip to main content
Log in

Persistence in fluctuating environments for interacting structured populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Individuals within any species exhibit differences in size, developmental state, or spatial location. These differences coupled with environmental fluctuations in demographic rates can have subtle effects on population persistence and species coexistence. To understand these effects, we provide a general theory for coexistence of structured, interacting species living in a stochastic environment. The theory is applicable to nonlinear, multi species matrix models with stochastically varying parameters. The theory relies on long-term growth rates of species corresponding to the dominant Lyapunov exponents of random matrix products. Our coexistence criterion requires that a convex combination of these long-term growth rates is positive with probability one whenever one or more species are at low density. When this condition holds, the community is stochastically persistent: the fraction of time that a species density goes below \(\delta >0\) approaches zero as \(\delta \) approaches zero. Applications to predator-prey interactions in an autocorrelated environment, a stochastic LPA model, and spatial lottery models are provided. These applications demonstrate that positive autocorrelations in temporal fluctuations can disrupt predator-prey coexistence, fluctuations in log-fecundity can facilitate persistence in structured populations, and long-lived, relatively sedentary competing populations are likely to coexist in spatially and temporally heterogenous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allesina S, Levine JM (2011) A competitive network theory of species diversity. Proc Natl Acad Sci 108:5638

    Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 116:151–170

    MathSciNet  Google Scholar 

  • Arnold L (1998) Random dynamical systems. In: Springer monographs in mathematics, Springer, Berlin

  • Bascompte J, Possingham H, Roughgarden J (2002) Patchy populations in stochastic environments: critical number of patches for persistence. Am Nat 159:128–137

    Google Scholar 

  • Benaïm M, Hofbauer J, Sandholm W (2008) Robust permanence and impermanence for the stochastic replicator dynamics. J Biol Dyn 2:180–195

    MathSciNet  MATH  Google Scholar 

  • Benaïm M, Schreiber SJ (2009) Persistence of structured populations in random environments. Theoret Popul Biol 76:19–34

    MATH  Google Scholar 

  • Bhattacharya R, Majumdar M (2007) Random dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Billingsley P (1999) Convergence of probability measures. In: Wiley series in probability and statistics: probability and statistics, 2nd edn. Wiley, New York

  • Boyce MS, Haridas CV, Lee CT, the NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Google Scholar 

  • Buss L, Jackson J (1979) Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am Nat 113:223–234

    Google Scholar 

  • Butler GJ, Waltman P (1986) Persistence in dynamical systems. J Differ Equ 63:255–263

    MathSciNet  MATH  Google Scholar 

  • Cameron DD, White A, Antonovics J (2009) Parasite-grass-forb interactions and rock-paper-scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities. J Ecol 97:1311–1319

    Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. In: Wiley series in mathematical and computational biology. Wiley, Chichester

  • Caswell H (2001) Matrix population models. Sinauer, Sunderland

    Google Scholar 

  • Chesson PL (1982) The stabilizing effect of a random environment. J Math Biol 15:1–36

    MathSciNet  MATH  Google Scholar 

  • Chesson PL (1985) Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theoret Popul Biol 28:263–287

    MathSciNet  MATH  Google Scholar 

  • Chesson PL (1994) Multispecies competition in variable environments. Theoret Popul Biol 45:227–276

    MATH  Google Scholar 

  • Chesson PL (2000a) General theory of competitive coexistence in spatially-varying environments. Theoret Popul Biol 58:211–237

    MATH  Google Scholar 

  • Chesson PL (2000b) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Google Scholar 

  • Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. Am Nat 117:923

    MathSciNet  Google Scholar 

  • Collie JS, Spencer PD (1994) Modeling predator-prey dynamics in a fluctuating environment. Can J Fish Aquat Sci 51(12):2665–2672

    Google Scholar 

  • Costantino RF, Cushing JM, Dennis B, Desharnais RA (1995) Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375:227–230

    Google Scholar 

  • Costantino RF, Cushing JM, Dennis B, Desharnais RA (1997) Chaotic dynamics in an insect population. Science 275:389–391

    MATH  Google Scholar 

  • Crauel H (2002) Random probability measures on Polish spaces. In: Stochastics monographs, vol 11. Taylor & Francis, London

  • Cushing JM (1998) An introduction to structured population dynamics. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol 71. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  • Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeniety explains the scale dependence of the native-exotic diversity relationships. Ecology 86:1602–1610

    Google Scholar 

  • Dennis B, Desharnais RA, Cushing JM, Costantino RF (1995) Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol Monogr 65:261–282

    Google Scholar 

  • Evans SN, Ralph P, Schreiber SJ, Sen A (2013) Stochastic growth rates in spatio-temporal heterogeneous environments. J Math Biol 66:423–476

    MathSciNet  MATH  Google Scholar 

  • Freedman HI, Waltman P (1977) Mathematical analysis of some three species food chains. Math Biosci 68:213–231

    MathSciNet  Google Scholar 

  • Garay BM, Hofbauer J (2003) Robust permanence for ecological differential equations, minimax, and discretizations. SIAM J Math Anal 34:1007–1039

    MathSciNet  MATH  Google Scholar 

  • Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source-sink systems. Proc Natl Acad Sci 99:14872–14877

    Google Scholar 

  • Gyllenberg M, Osipov AV, Söderbacka G (1996) Bifurcation analysis of a metapopulation model with sources and sinks. J Nonlinear Sci 6:329–366

    MathSciNet  MATH  Google Scholar 

  • Hardin DP, Takáč P, Webb GF (1988) Asymptotic properties of a continuous-space discrete-time population model in a random environment. J Math Biol 26:361–374

    MathSciNet  MATH  Google Scholar 

  • Harrison S, Quinn JF (1989) Correlated environments and the persistence of metapopulations. Oikos 56(3):293–298

    Google Scholar 

  • Hastings A (1988) Food web theory and stability. Ecology 69:1665–1668

    Google Scholar 

  • Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci 103:6067–6072

    Google Scholar 

  • Henson SM, Cushing JM (1997) The effect of periodic habitat fluctuations on a nonlinear insect population model. J Math Biol 36:201–226

    MathSciNet  MATH  Google Scholar 

  • Hofbauer J (1981) A general cooperation theorem for hypercycles. Monatshefte für Mathematik 91:233–240

    MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Schreiber SJ (2010) Robust permanence for interacting structured populations. J Differ Equ 248:1955–1971

    MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hofbauer J, So JWH (1989) Uniform persistence and repellors for maps. Proc Am Math Soc 107:1137–1142

    MathSciNet  MATH  Google Scholar 

  • Holyoak M, Leibold MA, Holt RD (eds) (2005) Spatial dynamics and ecological communities. University of Chicago Press, Metacommunities

    Google Scholar 

  • Hutson V (1984) A theorem on average Liapunov functions. Monatsh Math 98:267–275

    MathSciNet  MATH  Google Scholar 

  • Hutson V, Moran W (1987) Repellers in reaction-diffusion systems. Rocky Mt J Math 17(3):301–314

    MathSciNet  MATH  Google Scholar 

  • Hutson V, Schmitt K (1992) Permanence and the dynamics of biological systems. Math Biosci 111:1–71

    MathSciNet  MATH  Google Scholar 

  • Jansen VAA, Sigmund K (1998) Shaken not stirred: on permanence in ecological communities. Theoret Popul Biol 54:195–201

    MATH  Google Scholar 

  • Jansen VAA, Yoshimura J (1998) Populations can persist in an environment consisting of sink habitats only. Proc Natl Acad Sci USA 95:3696–3698

    Google Scholar 

  • Jin Y, Zhao XQ (2009) Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure. SIAM J Math Anal 40(6):2496–2516

    MathSciNet  MATH  Google Scholar 

  • Johst K, Wissel C (1997) Extinction risk in a temporally correlated fluctuating environment. Theoret Popul Biol 52:91–100

    MATH  Google Scholar 

  • Kerr B, Riley M, Feldman M, Bohannan J (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Google Scholar 

  • Kirkup B, Riley M (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    Google Scholar 

  • Kon R, Saito Y, Takeuchi Y (2004) Permanence of single-species stage-structured models. J Math Biol 48:515–528

    MathSciNet  MATH  Google Scholar 

  • Kuang JJ, Chesson PL (2009) Coexistence of annual plants: Generalist seed predation weakens the storage effect. Ecology 90:170–182

    Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain genetic diversity and species diversity in a plant community. Science 317:1561–1563

    Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci 100:12765–12770

    Google Scholar 

  • Lundberg P, Ranta E, Ripa J, Kaitala V (2000) Population variability in space and time. Trends Ecol Evol 15:460–464

    Google Scholar 

  • Magal P, McCluskey CC, Webb GF (2010) Lyapunov functional and global asymptotic stability for an infection-age model. Appl Anal Int J 89:1109–1140

    MathSciNet  MATH  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Times Books, New York

    MATH  Google Scholar 

  • Matthews DP, Gonzalez A (2007) The inflationary effects of environmental fluctuations ensure the persistence of sink metapopulations. Ecology 88:2848–2856

    Google Scholar 

  • May RM (1975) Stability and complexity in model ecosystems, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • May RM, Hassell MP (1981) The dynamics of multiparasitoid-host interactions. Am Nat 117:234–261

    MathSciNet  Google Scholar 

  • May RM, Leonard W (1975) Nonlinear aspects of competition between three species. SIAM J Appl Math 29:243–252

    MathSciNet  MATH  Google Scholar 

  • May RM (1973) Stability in randomly fluctuating versus deterministic environments. Am Nat 1973:621–650

    Google Scholar 

  • McGehee R, Armstrong RA (1977) Some mathematical problems concerning the ecological principle of competitive exclusion. J Differ Equ 23:30–52

    MathSciNet  MATH  Google Scholar 

  • Metz JAJ, de Jong TJ, Klinkhamer PGL (1983) What are the advantages of dispersing; a paper by Kuno extended. Oecologia 57:166–169

    Google Scholar 

  • Metz JAJ, Gyllenberg M (2001) How should we define fitness in structured metapopulation models? including an application to the calculation of evolutionarily stable dispersal strategies. Proc R Soc B 268:499–508

    Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. In: Lecture notes in biomathematics, vol 68. Springer, Berlin

  • Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162:544–557

    Google Scholar 

  • Nahum JR, Harding BN, Kerr B (2011) Evolution of restraint in a structured rock-paper-scissors community. Proc Natl Acad Sci 108:10831–10838

    Google Scholar 

  • Paquin C, Adams J (1983) Relative fitness can decrease in evolving asexual populations of S. cerevisiae. Nature 306:368–371

    Google Scholar 

  • Petchey OL, Gonzalez A, Wilson HB (1997) Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space. Proc Biol Sci 264(1389):1841–1847

    Google Scholar 

  • Petchey OL (2000) Environmental colour affects aspects of single-species population dynamics. Proc R Soc Lond Ser B Biol Sci 267:747–754

    Google Scholar 

  • Pollicott M (2010) Maximal lyapunov exponents for random matrix products. Invent Math 181:209–226

    MathSciNet  MATH  Google Scholar 

  • Ripa J, Ives AR (2003) Food web dynamics in correlated and autocorrelated environments. Theoret Popul Biol 64:369–384

    MATH  Google Scholar 

  • Rokhlin VA (1964) Exact endomorphism of a Lebesgue space. Izv Acad Sci USSR, Ser Mat 25:499–530

    Google Scholar 

  • Roughgarden J (1975) A simple model for population dynamics in stochastic environments. Am Nat 109(970):713–736

    Google Scholar 

  • Roughgarden J (1979) Theory of population genetics and evolutionary ecology. Macmillen, New York

    Google Scholar 

  • Roy M, Holt RD, Barfield M (2005) Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. Am Nat 166:246–261

    Google Scholar 

  • Ruelle D (1979a) Analyticity properties of the characteristic exponents of random matrix products. Adv Math 32(1):68–80. ISSN 0001–8708

    Google Scholar 

  • Ruelle D (1979b) Ergodic theory of differentiable dynamical systems. IHES Publ Math 50:27–58

    MathSciNet  MATH  Google Scholar 

  • Salceanu PL, Smith HL (2009a) Lyapunov exponents and persistence in some discrete dynamical systems. Discrete Contin Dyn Syst 12:187–203

    MathSciNet  MATH  Google Scholar 

  • Salceanu PL, Smith HL (2009b) Lyapunov exponents and uniform weak normally repelling invariant sets. In: Positive systems. Springer, Berlin

    Google Scholar 

  • Salceanu PL, Smith HL (2010) Persistence in a discrete-time, stage-structured epidemic model. J Differ Equ Appl 16(1):73–103

    MathSciNet  MATH  Google Scholar 

  • Schmidt KA (2004) Site fidelity in temporally correlated environments enhances population persistence. Ecol Lett 7:176–184

    Google Scholar 

  • Schreiber SJ (1997) Gerneralist and specialist predators that mediate permanence in ecological communities. J Math Biol 36:133–148

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ (2000) Criteria for \({C}^r\) robust permanence. J Differ Equ 162:400–426

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ (2004) Coexistence for species sharing a predator. J Differ Equ 196:209–225

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ (2006) Persistence despite perturbations for interacting populations. J Theoret Biol 242:844–52

    MathSciNet  Google Scholar 

  • Schreiber SJ (2007) On persistence and extinction of randomly perturbed dynamical systems. Discrete Contin Dyn Syst B 7:457–463

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ, Benaïm M, Atchadé KAS (2011) Persistence in fluctuating environments. J Math Biol 62:655–683

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ, Rittenhouse S (2004) From simple rules to cycling in community assembly. Oikos 105:349–358

    Google Scholar 

  • Schreiber SJ (2010) Interactive effects of temporal correlations, spatial heterogeneity, and dispersal on population persistence. Proc R Soc Biol Sci 277:1907–1914

    Google Scholar 

  • Schreiber SJ (2012) Persistence for stochastic difference equations: a mini-review. J Differ Equ Appl 18:1381–1403

    MathSciNet  MATH  Google Scholar 

  • Schreiber SJ, Killingback TP (2013) Cycling in space: Persistence of rock-paper-scissor metacommunities. Theoret Popul Biol 86:1–11

    MATH  Google Scholar 

  • Schuster P, Sigmund K, Wolff R (1979) Dynamical systems under constant organization 3: Cooperative and competitive behavior of hypercycles. J Differ Equ 32:357–368

    MathSciNet  MATH  Google Scholar 

  • Simmons S (1998) Minimax and monotonicity. Springer, Berlin

    Google Scholar 

  • Sinervo B, Lively C (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243

    Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. In: Graduate studies in mathematics, vol 118. American Mathematical Society, Providence

  • Snyder RE (2007) Spatiotemporal population distributions and their implications for species coexistence in a variable environment. Theoret Popul Biol 72(1):7–20

    MATH  Google Scholar 

  • Snyder RE (2008) When does environmental variation most influence species coexistence? Theoret Ecol 1(3):129–139

    Google Scholar 

  • Snyder RE, Chesson PL (2003) Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol Lett 6(4):301–309

    Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    MathSciNet  MATH  Google Scholar 

  • Thieme HR (2011) Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators. J Differ Equ 250:3772–3801

    MathSciNet  MATH  Google Scholar 

  • Tuljapurkar S (1990) Population dynamics in variable environments. Springer, New York

    MATH  Google Scholar 

  • Tuljapurkar S, Coulson T, Steiner UK (2012) Structured population models: introduction. Theoret Popul Biol 82:241–243

    Google Scholar 

  • Tuljapurkar S, Haridas CV (2006) Temporal autocorrelation and stochastic population growth. Ecol Lett 9:327–337

    Google Scholar 

  • Vandermeer J, Pascual M (2005) Competitive coexistence through intermediate polyphagy. Ecol Complex 3:37–43

    Google Scholar 

  • Vasseur DA, Yodzis P (2004) The color of environmental noise. Ecology 85:1146–1152

    Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. In: Graduate texts in mathematics, vol 79. Springer, New York

  • Xu D, Zhao XQ (2003) A nonlocal reaction-diffusion population model with stage structure. Can Appl Math Q 11:303–319

    MathSciNet  MATH  Google Scholar 

  • Zhao XQ, Hutson V (1994) Permanence in kolmogorov periodic predator-prey models with diffusion. Nonlinear Anal Theory Methods Appl 23(5):651–668

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

GR was supported by the Swiss National Science Foundation Grant 137273 and a start-up grant to SJS from the College of Biological Sciences, University of California, Davis. SJS was supported in part by U.S. National Science Foundation Grants EF-0928987 and DMS-1022639. The authors thank two anonymous referees for their very useful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, G., Schreiber, S.J. Persistence in fluctuating environments for interacting structured populations. J. Math. Biol. 69, 1267–1317 (2014). https://doi.org/10.1007/s00285-013-0739-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0739-6

Mathematics Subject Classification

Navigation