Skip to main content

Advertisement

Log in

Optimal control for an age-structured model for the transmission of hepatitis B

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

One of the characteristics of HBV transmission is the age structure of the host population and the vertical transmission of the disease. That is the infection is transmitted directly from infected mother to an embryo, fetus, or baby during pregnancy or childbirth (the perinatal infection). We formulated an age-structured model for the transmission dynamics of HBV with differential infectivity: symptomatic and asymptomatic infections. The model without intervention strategies is completely analyzed. We compute the basic reproduction number which determines the outcome of the disease. We also compute equilibria and study their stability. The sensitivity analysis of the initial model parameters is performed (to determine the impact of control-related parameters on outbreak severity). Using optimal control theory, we determine the cost-effective balance of three interventions methods which minimizes HBV-related deaths as well as the costs associated with intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) Infectious disease of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Anderson RM, May RM, Nokes DJ (1992) Preliminary analyses of the predicted impacts of various vaccination strategies on the transmission of hepatitis B virus. In: Bennet DL (ed) The control of hepatitis B: the role of prevention in adolescence. Gower Medical Publishing, London, pp 95–130

    Google Scholar 

  • Anita S (2000) Analysis and control of age-dependent population dynamics. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  • Barbu V, Iannelli M (1999) Optimal control of population dynamics. J Optim Theory Appl 102:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 2:229–243

    Article  MATH  Google Scholar 

  • Bonzi B, Fall AA, Iggidr A, Sallet G (2010) Stability of differential susceptibility and infectivity epidemic models. J Math Biol. doi:10.1007/s00285-010-0327-y

  • Bowong S (2010) Optimal control of the dynamics of tuberculosis. Nonlinear Dyn 61:729–748

    Article  MathSciNet  MATH  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2016) The pre-travel consultation travel-related vaccine-preventable diseases: Hepatitis B. In: Traveler’s health-yellow book, chap 3. http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/hepatitis-b

  • Da Prato G, Iannelli M (1994) Boundary control problem for age-dependent equations. In: Clement P, Lumer G (eds) Evolutions equations, control theory and applications, vol 155. Marcel Dekker, New York

    Google Scholar 

  • Djidjou Demasse R, Ducrot A (2013) An age-structured within-host model for multistrain malaria infections. SIAM J Appl Math 73:572–592. doi:10.1137/120890351

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Ducrot A, Liu Z, Magal P (2008) Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J Math Anal Appl 341:501–518

    Article  MathSciNet  MATH  Google Scholar 

  • Edmunds WJ, Medley GF, Nokes DJ, Hall AJ, Whittle HC (1993) The influence of age on the development of the hepatitis B carrier state. Proc R Soc Lond B 253:197–201

    Article  Google Scholar 

  • Edmunds WJ, Medley GF, Nokes DJ (1996) The transmission dynamics and control of hepatitis B virus in the Gambia. Stat Med 15:2215–2233

    Article  Google Scholar 

  • Edmunds WJ, Medley GF, Nokes DJ (1996) Vaccination against hepatitis B virus in highly endemic area: Waning vaccine-induced immunity and the need for booster doses. Trans R Soc Trop Med Hyg 90:436–440

    Article  Google Scholar 

  • Emvudu Y, Djidjou Demasse R, Djeudeu D (2013) Optimal control using state-dependent Riccati equation of lost of sight in a tuberculosis model. Comp Apll Math 32:191–210

    Article  MathSciNet  MATH  Google Scholar 

  • Emvudu Y, Djidjou Demasse R, Djeudeu D (2011) Optimal control of the lost to follow up in a tuberculosis model. Comput Math Methods Med 2011:1–12. Art. ID 398476

  • Ekeland I (1974) On the variational principle. J Math Anal Appl 47:324–353

    Article  MathSciNet  MATH  Google Scholar 

  • Evans LC, Gariepy RF (1992) Measure Theory and Fini Properties of Functions. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Feichtinger G, Tragler G, Veliov VM (2003) Optimality conditions for age-structured control systems. J Math Appl 288:47–68

    MathSciNet  MATH  Google Scholar 

  • Fister K, Lenhart S (2004) Optimal control of a competitive system with age-structured. J Math Anal Appl 291:526–537

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein ST, Zhou FJ, Hadler SC, Bell BP, Mast EE, Margolis HS (2005) A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int J Epidemiol 34:1329–1339

    Article  Google Scholar 

  • Hethcote HW, Thieme HR (1985) Stability of the endemic equilibrium in epidemic models with subpopulations. Math Biosci 75:205–277

    Article  MathSciNet  MATH  Google Scholar 

  • Iannelli M (1994) Mathematical theory of age-structured population dynamics. Giadini Editori e Stampatori, Pisa

  • Inaba H (2006) Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discret Contin Dyn Syst Ser B 6:69–96

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol 65:309–348

    Article  MathSciNet  MATH  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall, London

    MATH  Google Scholar 

  • Magal P, Ruan S (2009) On semilinear Cauchy problems with non-dense domain. Adv Differ Equ 14:1041–1084

    MathSciNet  MATH  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MathSciNet  Google Scholar 

  • McLean AR, Blumberg BS (1994) Modelling the impact of mass vaccination against hepatitis B. I. Model formulation and parameter estimation. Proc R Soc Lond B 256:7–15

    Article  Google Scholar 

  • McMahon BJ, Alward WL, Hall DB, Heyward WL, Bender TR, Francis DP, Maynard JE (1985) Acute hepatitis b virus infection : relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 151(4):599–603

    Article  Google Scholar 

  • Medley GF, Lindop NA, Edmunds WJ, Nokes DJ (2001) Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nat Med 7:619–624

    Article  Google Scholar 

  • Neilan RLM, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 72:2001–2018

    MathSciNet  MATH  Google Scholar 

  • Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28:112–125

    Article  Google Scholar 

  • Thieme HR (1990) Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ Integ Equ 3:1035–1066

    MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Webb GF (1993) Asynchronous exponential growth in differential equations with homogeneous nonlinearities, Differential Equations in Banach Spaces. In: Dore G, Favini A, Obrecht E, Venni A (eds) Lecture notes in pure and applied mathematics, 148, Dekker, New York, pp. 225–233

  • World Health Organization (WHO) (2013) Hepatitis B, Revised http://www.who.int/mediacentre/factsheets/fs204/en/index.html

  • World Health Organization (WHO) (2002–present) Global Health Observatory Data Repository. http://apps.who.int/gho/data/view.country.5800

  • Williams JR, Nokes DJ, Medley GF, Anderson RM (1996) The transmission dynamics of hepatitis B in the UK: A mathematical model for evaluating costs and effectiveness of immunization programmes. Epidemiol Infect 116:71–89

    Article  Google Scholar 

  • Zhao S-J, Xu Z-Y, Lu Y (2000) A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int J Epidemiol 29:744–752

    Article  Google Scholar 

  • Zou L, Ruan S, Zhang W (2010) an age-structured model for the transmission dynamics of hepatitis B. SIAM J Appl Math 70(8):3121–3139

    Article  MathSciNet  MATH  Google Scholar 

  • Zou L, Zhang W, Ruan S (2010) Modeling the transmission dynamics and control of hepatitis B virus in China. J Theor Biol 262:330–338

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramses Djidjou Demasse.

Appendices

Proof of Claim 2.3.2

The positive operator T(0) has the Perron-Frobenius properties, roughly speaking, T(z) is irreducible and \(r\left( T(z)\right) \) is decreasing for real \(z\in (-v_{min},+\infty )\). Moreover, \(\lim _{z\rightarrow -v_{min}}r\left( T(z)\right) =+\infty \) and \(\lim _{z\rightarrow +\infty }r\left( T(z)\right) =0\); then the first half of the proposition is the direct consequence of this monotonicity of \(r\left( T(z)\right) \). Next we show the dominant property of \(z_0\). For any \(z\in \varSigma ^0{\setminus }\{z_0\},\) there is an vector \(\psi _z\), such that \(T(z)\psi _z=\psi _z\). Then we have \(|\psi _z|=|T(z)\psi _z| \le T(R_ez)|\psi _z|\). The eigenspace corresponding to the eigenvalue \( r\left( T(R_ez)\right) \) is one-dimensional subspace of \(\mathbb {R}^4\) spanned by a strictly positive functional \(F_{R_ez}\). We obtain that

$$\begin{aligned} r\left( T(R_ez)\right) [F_{R_ez}, |\psi _z|]= [F_{R_ez}, T(R_ez)|\psi _z|]\ge [F_{R_ez},|\psi _z|], \end{aligned}$$

where we write the value of \(F_{R_ez}\) at \(\psi _z\) as \([F_{R_ez},\psi _z]\). Hence we have \(r\left( T(R_ez)\right) \ge 1\) and \(R_ez\le z_0\) because \(r\left( T(z)\right) \) is strictly deceasing for \(z\in (-\mu _1,+\infty )\) and \(r\left( T(R_ez_0)\right) =1\). This end the proof of Claim 2.3.2.

Proof of Theorem 4

The coordinates of \(\mathbf {E}^*\) satisfied

$$\begin{aligned} s(a)= & {} \theta b(1-\nu C) e^{-\int _0^a (\beta (\sigma )(I+\tau C)+p(\sigma ))d\sigma }\nonumber \\&+\psi \int _0^a v(\eta ) e^{-\int _\eta ^a (\beta (\sigma )(I+\tau C)+p(\sigma ))d\sigma }d\eta ,\end{aligned}$$
(45)
$$\begin{aligned} L_i= & {} \frac{I+\tau C}{\mu _1+\gamma } \int _0^\omega \beta (a)\alpha (a)l(a)h(I,C,a)da, \nonumber \\ L_c= & {} \frac{I+\tau C}{\mu _1+\delta } \int _0^\omega \beta (a)(1-\alpha (a))l(a)h(I,C,a)da+ \frac{b\theta \nu C}{\mu _1+\delta }, \nonumber \\ I= & {} \frac{\gamma (I+\tau C)}{(\mu _1+\gamma )(\mu _1+\mu _I+\gamma _1)} \int _0^\omega \beta (a)\alpha (a)l(a)h(I,C,a)da, \end{aligned}$$
(46)
$$\begin{aligned} C= & {} \frac{\delta (I+\tau C)}{(\mu _1+\delta )(\mu _1+\mu _c+\gamma _2)} \int _0^\omega \beta (a)(1-\alpha (a))l(a)h(I,C,a)da\nonumber \\&+\frac{\delta b\theta \nu C}{(\mu _1+\delta )(\mu _1+\mu _c+\gamma _2)}, \nonumber \\ v(a)= & {} b(1-\theta ) e^{-\psi a}+\int _0^a p(\eta ) s(\eta ) e^{-\psi (a-\eta )}d\eta ,\nonumber \\ R= & {} \frac{\gamma _1I+\gamma _2C}{\mu _1}. \end{aligned}$$
(47)

wherein h(ICa) is the right-hand side of (45).

Using Eqs. (46) and (47) we have the following fixed point equation \(H(I,C)^T=(I,C)^T;\) where \(H(I,C)^T= \left( \begin{array}{c@{\quad }c} H_1(I,C), H_2(I,C) \end{array} \right) ^T \) and \(H_1(I,C)\); \(H_2(I,C)\) are respectively the right-hand side of Eqs. (46) and (47).

Thus the equilibrium points are fixed points of H given by

$$\begin{aligned} H(I,C)^T=(I,C)^T. \end{aligned}$$
(48)

The Eq. (48) implies that at the endemic steady state the infected population simply reproduce itself. Therefore we can call H the next generation operator at the endemic steady state. This fact is used to show the stability of the endemic steady state in Sect. 2.3.3.

We use (48) to prove existence and uniqueness of an endemic equilibrium point. Then we use a theorem for the existence and uniqueness of a positive fixed point of a multi-variable function (see Hethcote and Thieme 1985, Theorem 2.1).

In fact H(IC) is continuous, bounded function. Since \(h(0,0,.)=s^0(.)\) (the disease-free steady state) and H infinitely differentiable, then the Jacobian at point (0, 0) is given by

$$\begin{aligned} H'(0,0)=\left( \begin{array}{c@{\quad }c} \frac{\gamma \mathscr {K}_i}{(\mu _1+\gamma )(\mu _1+\mu _I+\gamma _1)} &{} \frac{\gamma \mathscr {K}_i}{(\mu _1+\gamma )(\mu _1+\mu _I+\gamma _1)} \\ &{} \\ \frac{\delta \mathscr {K}_c}{(\mu _1+\delta )(\mu _1+\mu _c+\gamma _2)} &{} \frac{\delta (\mathscr {K}_c+b\theta \nu )}{(\mu _1+\delta )(\mu _1+\mu _c+\gamma _2)} \\ \end{array} \right) \end{aligned}$$

Thus the function H(IC) is monotone non-decreasing and \(H(0,0)=(0,0)\). Note that \(\rho (H'(0,0))=\mathscr {R}_0>1\). Thanks the graph theory, we claim that \(H'(0,0)\) is irreducible because the associated graph of the matrix is strongly connected.

Let us now prove that H is strictly sub linear, i.e., \(H(rI,rC)>rH(I,C)\), for any \((I,C)>0\) and \(r\in (0,1)\). For instance

$$\begin{aligned} \frac{rH_1(I,C)}{H_1(rI,rC)}= \frac{r\int _0^\omega \beta (a)(1-\alpha (a))l(a)h(I,C,a)da }{\int _0^\omega \beta (a)(1-\alpha (a))l(a)h(rI,rC,a)da } \le r <1; \end{aligned}$$

and the same argument gives that \(\frac{rH_2(I,C)}{H_2(rI,rC)}<1\). In this way we end the proof of Theorem 4.

Proof of Lemma 6

  1. 1.

    Let us set \(w^h:=(S^h,V^h,L_i^h,I^h,L_c^h,C^h)\) and the same for \(w^v\). Using the Volterra integral formulation and system (31), we find that

    $$\begin{aligned}&||S^{h}-S^{v}||_{L^1(\mathscr {Q}_1)}+ ||V^{h}-V^{v}||_{L^1(\mathscr {Q}_1)}\le T_fC_4( ||w^{h}-w^{v}||_{L^1(\mathscr {X})}\\&\quad +||{h}-{v}||_{L^1(\mathscr {Q})}+ ||h_1(.,0)-v_1(.,0)||_{L^1(\mathscr {Q}_2)}). \end{aligned}$$

    We also find that

    $$\begin{aligned}&||(L_i^h,I^h,L_c^h,C^h)-(L_i^v,I^v,L_c^v,C^v)||_{L^1(\mathscr {Q}_2)} \le T_fC_5 (||w^{h}-w^{v}||_{L^1(\mathscr {X})}\\&\quad +||{h}-{v}||_{L^1(\mathscr {Q})}+||h_1(.,0) -v_1(.,0)||_{L^1(\mathscr {Q}_2)}). \end{aligned}$$

    Then, for \(T_f\) sufficiently small,

    $$\begin{aligned} ||w^{h}-w^{v}||_{L^1(\mathscr {X})}\le T_f C_1 ||{h}-{v}||_{L^1(\mathscr {Q})}. \end{aligned}$$

    The same arguments can be apply for the second estimate of item 1. and for item

  2. 2.

    It remains to check item 3.

  3. 3.

    We suppose that \(h_n:=(h_{1n},h_{2n},h_{3n})\rightarrow h:=(h_1,h_2,h_3)\) in \(L^1(\mathscr {Q}\). Possibly along a subsequence (using the same notation), \(h_n^2\rightarrow h^2\) a.e. on \(\mathscr {Q}\) by (see Evans and Gariepy 1992, p. 21). By Lebesgue’s dominated convergence theorem, it comes \(\lim _{n\rightarrow \infty } ||h_n^2||_{L^1(\mathscr {Q})}= ||h^2||_{L^1(\mathscr {Q})}\). We have the similar arguments for \(||v^2||_{L^1(\mathscr {Q})}\). These handle the convergence of the squared terms in our functional.

Next, we illustrate the convergence of one term in the functional,

Therefore,

$$\begin{aligned} \left| \mathscr {J}(h_n)-\mathscr {J}(h)\right| \le C_7(T_f) ||{h_n}-h|| _{L^1(\mathscr {Q})}. \end{aligned}$$

Hence we have the lower semi-continuity, \(\mathscr {J}(h)\le \liminf _{n\rightarrow \infty } \mathscr {J}(h_n)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djidjou Demasse, R., Tewa, JJ., Bowong, S. et al. Optimal control for an age-structured model for the transmission of hepatitis B. J. Math. Biol. 73, 305–333 (2016). https://doi.org/10.1007/s00285-015-0952-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0952-6

Keywords

Mathematics Subject Classification

Navigation