Skip to main content

Advertisement

Log in

Mathematical modeling and simulation of the evolution of plaques in blood vessels

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a model is developed for the evolution of plaques in arteries, which is one of the main causes for the blockage of blood flow. Plaque rupture and spread of torn-off material may cause closures in the down-stream vessel system and lead to ischemic brain or myocardial infarctions. The model covers the flow of blood and its interaction with the vessel wall. It is based on the assumption that the penetration of monocytes from the blood flow into the vessel wall, and the accumulation of foam cells increasing the volume, are main factors for the growth of plaques. The dynamics of the vessel wall is governed by a deformation gradient, which is given as composition of a purely elastic tensor, and a tensor modeling the biologically caused volume growth. An equation for the evolution of the metric is derived quantifying the changing geometry of the vessel wall. To calculate numerically the solutions of the arising free boundary problem, the model system of partial differential equations is transformed to an ALE (Arbitrary Lagrangian-Eulerian) formulation, where all equations are given in fixed domains. The numerical calculations are using newly developed algorithms for ALE systems. The results of the simulations, obtained for realistic system parameters, are in good qualitative agreement with observations. They demonstrate that the basic modeling assumption can be justified. The increase of stresses in the vessel wall can be computed. Medical treatment tries to prevent critical stress values, which may cause plaque rupture and its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40(12):1297-1316

    Article  MathSciNet  MATH  Google Scholar 

  • Barrett KE, Boitano S, Barman SM, Brooks HL (2010) Ganongs review of medical physiology, 23rd edn. McGraw Hill Professional, USA

    Google Scholar 

  • Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phy Fluids 19(9):093103

    Article  Google Scholar 

  • Ciarlet PG (1988) Mathematical Elasticity, vol.I: Three-Dimensional Elasticity. North-Holland, Amsterdam

  • Doktorski I (2007) Mechanical model for biofilm growth phase. PhD thesis, University of Heidelberg

  • Dunne T, Rannacher R, Richter T (2010) Numerical simulation of fluid-structure interaction based on monolithic variational formulations. Fundamental Trends in Fluid-Structure Interaction., vol 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its ApplicationsWorld Scientific, Singapore, pp 1-75

  • El Khatib N, Génieys S, Volpert V (2007) Atherosclerosis Initiation Modeled as an Inflammatory Process. Math Model Nat Phenom 2:126-141

    Article  MathSciNet  Google Scholar 

  • Fasano A, Santos RF, Sequeira A (2011) Blood coagulation: a puzzle for biologists, a maze for mathematicians. In: Ambrosi D, Quarteroni A, Rozza G (eds) Modelling of physiological flows. Springer-Verlag, Italia, pp 41-75

    Google Scholar 

  • Fernández MA, Formaggia L, Gerbeau J-F, Quarteroni A (2009) The derivation of the equations for fluids and structure. Cardiovascular Mathematics., vol 1, Springer, Milan, pp 77-121

  • Fogelson AL (1992) Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J Appl Math 52(4):1089-1110

    Article  MathSciNet  MATH  Google Scholar 

  • Formaggia L, Moura A, Nobile F (2007) On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM. Math Model Num Anal 41(04):743-769

    Article  MathSciNet  MATH  Google Scholar 

  • Fung YC (1984) Biodynam Circ. Springer-Verlag, New York

    Google Scholar 

  • Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10:53-62

    Article  Google Scholar 

  • Holzapfel G (2000) Nonlinear solid mechanics, a continuum approach for engineering. John Wiley and Sons, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 30:753-767

    Article  Google Scholar 

  • Hron J, Madlik M (2007) Fluid-structure interaction with applications in biomechanics. Nonlinear Anal Real World Appl 8:1431-1458

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics, cells, tissues, and organs. Springer, NewYork

    Book  Google Scholar 

  • Ibragimov AI, McNeal CJ, Ritter LR, Walton JR (2005) A mathematical model of atherogenesis as an inflammatory response. Math Med Biol 22(4):305-333

    Article  MATH  Google Scholar 

  • Janela J, Moura A, Sequeira A (2010) A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. J Comp Appl Math 234(9):2783-2791

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Jones GW, Chapman SJ (2012) Modeling growth in biological materials. SIAM Rev 54(1):52-118

    Article  MathSciNet  MATH  Google Scholar 

  • Kalita P, Schaefer R (2008) Mechanical models of artery walls. Arch Comp Methods Eng 15:1-36

    Article  MathSciNet  MATH  Google Scholar 

  • Li ZY, Howarth SPS, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? Stroke 37(5):1195-1199

    Article  Google Scholar 

  • Ougrinovskaia A, Thompson R, Myerscough M (2010) An ODE model of early stages of atherosclerosis: mechanisms of theinflammatory response. Bull Math Biol 72:1534-1561

    Article  MathSciNet  MATH  Google Scholar 

  • Pasterkamp G, Falk E (2000) Atherosclerotic plaque rupture: an overview. J Clin Basic Cardiol 3:81-86

    Google Scholar 

  • Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of numerical analysis 12. Elsevier, Amsterda, pp 3-127

  • Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comp Visual Sci 2:163-197

    Article  MATH  Google Scholar 

  • Quarteroni A, Veneziani A, Zunino P (2001) Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM J Numer Anal 39(5):1488-1511

    Article  MathSciNet  MATH  Google Scholar 

  • Rajagopal KR, Srinivasa AR (2004) On thermomechanical restrictions of continua. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 460, The Royal Society, pp 631-651

  • Richter T (2011) Gascoigne. Lecture Notes, University of Heidelberg, http://numerik.uni-hd.de/ richter/SS11/gascoigne/index.html

  • Robertson AM (2008) Review of relevant continuum mechanics. In: Hemodynamical flows: modeling, analysis and simulation. Springer, pp 1-62

  • Robertson AM, Sequeira A, Kameneva MV (2008) Hemorheology. In: Hemodynamical flows: modeling, analysis and simulation. Springer, pp 63-120

  • Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131(6):061010

    Article  Google Scholar 

  • Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: In vivo MRI-based 2D/3D FSI models. J Biomech 41(4):727-736

    Article  Google Scholar 

  • Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32:947-960

    Article  Google Scholar 

  • Turek S, Hron J, Madlik M, Razzaq M, Wobker H, Acker JF (2010) Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics. Fluid Structure Interaction II, Springer-Berlin-Heidelberg, pp 193-220

  • VanEpps JS, Vorp DA (2007) Mechanopathobiology of atherogenesis: a review. J Surg Res 142:202-217

    Article  Google Scholar 

  • Weller F (2008) Platelet deposition in non-parallel flow. J Math Biol 57:333-359

    Article  MathSciNet  MATH  Google Scholar 

  • Weller F, Neuss-Radu M, Jäger W (2013) Analysis of a free boundary problem modeling thrombus growth. SIAM J Math Anal 45:809-833

    Article  MathSciNet  MATH  Google Scholar 

  • Wick T (2011) Fluid-structure interactions using different mesh motion techniques. Comp Struct 89:1456-1467

    Article  Google Scholar 

  • Yang Y, Richter T, Jäger W, Neuss-Radu M. An ALE approach to mechano-chemical processes in fluid-structure interactions (in preparation)

  • Zamir M (2005) The physics of coronary blood flow, series: biological and medical physics, biomedical engineering. Springer, New York

    Google Scholar 

  • Zohdi TI, Holzapfel GA, Berger SA (2004) A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol 227:437-443

    Article  Google Scholar 

Download references

Acknowledgments

The work of the first author was supported in the framework the Pioneering Projects of IWR, University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Neuss-Radu.

Additional information

Dedicated to Mats Gyllenberg on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jäger, W., Neuss-Radu, M. et al. Mathematical modeling and simulation of the evolution of plaques in blood vessels. J. Math. Biol. 72, 973–996 (2016). https://doi.org/10.1007/s00285-015-0934-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0934-8

Keywords

Mathematics Subject Classification

Navigation