Skip to main content
Log in

Cluster formation in a heterogeneous metapopulation model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A spatially explicit heterogeneous metapopulation model with two different patch types is analyzed. Some network topologies support a partially synchronized dynamics, a state where two different clusters of patches are formed. Within each cluster the dynamics of all patches are synchronized. The linearized asymptotic stability of the partially synchronized attractor is studied. The transversal stability is analyzed and a simple expression for the transversal Lyapunov number of partially synchronized attractors is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander JC, Kan I, Yorke JA, Zhiping Y (1992) Riddled basins. Int J Bifurc Chaos 2:795-813

    Article  MathSciNet  MATH  Google Scholar 

  • Allen JC, Schaffer WA, Rosko D (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364:229-235

    Article  Google Scholar 

  • Ashwin P, Buescu J, Stewart I (1996) From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 9:703-737

    Article  MathSciNet  MATH  Google Scholar 

  • Bascomte J, Solé RV (1998) Modeling spatio-temporal dynamics in ecology. Springer, Berlin

    Google Scholar 

  • Barrionuevo JA, Silva JAL (2008) Stability and synchronism of a certain dynamical systems. SIAM J Math Anal 40(3):939-951

    Article  MathSciNet  MATH  Google Scholar 

  • Cazelles B, Bottani S, Stone L (2001) Unexpected coherence and conservation. Proc R Soc Lond B 268:2595-2602

    Article  Google Scholar 

  • Cazelles B (2001) Dynamics with riddled basins of attraction in models of interaction populations. Chaos Solitons Fractals 12:301-311

    Article  MathSciNet  MATH  Google Scholar 

  • Comins HN, Hassell MP, May RM (1992) The spatial dynamics of host-parasitoid systems. J Anim Ecol 61:735-748

    Article  Google Scholar 

  • Doebeli M (1995) Dispersal and dynamics. Theor Popul Biol 47:82-106

    Article  MATH  Google Scholar 

  • Dmitriev AS, Shirokov M, Starkov SO (1997) Chaotic synchronization in ensembles of coupled maps. IEEE Trans Circuits Syst I Fundam Theory Appl 44(10):918-926

    Article  MathSciNet  Google Scholar 

  • Earn DJD, Levin SA, Rohani P (2000) Coherence and conservation. Science 290:1360-1364

    Article  Google Scholar 

  • Earn DJD, Levin SA (2006) Global aymptotic coherence in discrete dynamical systems. PNAS 103(11):3968-3971

    Article  MathSciNet  MATH  Google Scholar 

  • Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617-656

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Soderbacka G, Ericsson S (1993) Does migration stabilize local population dynamics. Analysis of a discrete metapopulation model. Math Biosci 118:25-49

    Article  MathSciNet  MATH  Google Scholar 

  • Hanski IA, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution (Eds). Academic Press, San Diego

    MATH  Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in sect population dynamics. Nature 353:255-258

    Article  Google Scholar 

  • Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74(5):1362-1372

    Article  Google Scholar 

  • Heino M, Kaitala V, Lindstrom J (1997) Synchronous dynamics and rates of extinction in spatially structures populations. Proc R Soc Lond B 264:481-486

    Article  Google Scholar 

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792-794

    Article  Google Scholar 

  • Horn RA, Johnson CA (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ims RA, Yoccoz NG (1997) Studying transfer processes in metapopulations. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics, evolution. Academic Press, San Diego

    Google Scholar 

  • Kaneko K (1990) Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Physica D 41:137-172

    Article  MathSciNet  MATH  Google Scholar 

  • Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Kendall BE, Fox GA (1998) Spatial structure, environmental heterogeneity, and population dynamics: analysis of coupled logistic map. Theor Popul Biol 54:11-37

    Article  MATH  Google Scholar 

  • Lai YC, Grebogi C, Yorke JA, Venkataramani SC (1996) Riddling bifurcation in chaotic dynamical systems. Phys Rev Lett 77:55-58

    Article  Google Scholar 

  • Mañé R (1987) Ergodic theory and differentiable dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nee S, May RM, Hassel MP (1997) Two-species metapopulation models. In: Hasnski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego

    Google Scholar 

  • Ott E, Sommerer JC (1994) Blowout bifurcations: the occurrence of riddled basins and on-off intermittency. Phys Lett A 188:39-47

    Article  Google Scholar 

  • Pugh C, Shub M (1989) Ergodic attractors. Trans Am Math Soc 312:1-54

    Article  MathSciNet  MATH  Google Scholar 

  • Rohani P, May RM, Hassel MP (1996) Metapopulation and equilibrium stability: the effects of partial structure. J Theor Biol 181:97-109

    Article  Google Scholar 

  • Ruxton GD (1996) Density-dependent migration and stability in a system of linked populations. Bull Math Biol 58:643-660

    Article  MATH  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Silva JAL, Barrionuevo JA, Giordani FT (2010) Synchronism in population networks with nonlinear coupling. Nonlinear Anal 11(2):105-1016

    MathSciNet  MATH  Google Scholar 

  • Silva JAL, DeCastro M, Justo DA (2000) Synchronism in a metapopulation model. Bull Math Biol 62:337-349

    Article  MATH  Google Scholar 

  • Taylor AD (1990) Metapopulations, dispersal, and predato-preydynamics: an overview. Ecology 71(2):429-433

    Article  Google Scholar 

  • Thunberg H (2001) Periodicity versus chaos in one-dimensional dynamics. SIAM Rev 43:3-30

    Article  MathSciNet  MATH  Google Scholar 

  • Tilman D, Kareiva P (1997) Spatial ecology: the role of space in population dynamics an interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Ugarcovici I, Weiss H (2007) Chaotic attractors and physical measures for some density dependent Leslie matrix population models. Nonlinearity 20:2897-2906

    Article  MathSciNet  MATH  Google Scholar 

  • Young L-S (2002) What are SRB measures and which dynamical systems have them. J Stat Phys 108(5):733-754

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques A. L. Silva.

Appendix

Appendix

Lemma 1

\(S^{\bot }\) is C-invariant.

Proof

Since the set \(B_{S^{\bot }}\) is a basis for \(S^{\bot }\), it will be enough to show that \(Cv\in S^{\bot }\) for all \(v\in S^{\bot }\). Clearly for \(i=1,2\ldots ,k-1\) we have

$$\begin{aligned} Cu_i \in S^{\bot }\Leftrightarrow Cu_i =a_{1,i} u_1 +\cdots +a_{k-1,i} u_{k-1} +a_{k,i} w_1 +\cdots +a_{n-2,i} w_{n-k-1},\nonumber \\ \end{aligned}$$
(37)

for some coefficients \(a_{mi} \in \mathfrak {R}\), \(m=1,2,\ldots ,n-2\). Taking in account the definitions of the basis vectors \(u_i\)’s and \(w_i\)’s given in (16), solving for the \(a_{mi}\)’s we can write the right hand side of (37) in the equivalent form

$$\begin{aligned} \left\{ {\begin{array}{ll} -\sum \limits _{m=1}^{k-1} {a_{mi} =-c_{11} +c_{1,i+1} } &{}\\ a_{mi} =-c_{m+1,1} +c_{m+1,i+1},&{}\quad \quad m=1,2,\ldots ,k-1 \\ -\sum \limits _{m=k}^{n-2} {a_{mi} =-c_{k+1,1} +c_{k+1,i+1} } &{}\\ a_{mi} =-c_{m+2,1} +c_{m+2,i+1},&{}\quad \quad m=k,k+1,\ldots ,n-2. \\ \end{array}} \right. \end{aligned}$$
(38)

Substituting the \(a_{mi}\)’s by the corresponding expressions depending on the coefficients of the matrix C, we can restate the above condition using only the coefficients of the connectivity matrix to obtain

$$\begin{aligned} \left\{ {\begin{array}{l} \sum \limits _{m=1}^{k-1} {(c_{m+1,1} -c_{m+1,i+1} )} =-c_{11} +c_{1,i+1} \\ \sum \limits _{m=k}^{n-2} {(c_{m+2,1} -c_{m+2,i+1} )} =-c_{k+1,1} +c_{k+1,i+1}. \\ \end{array}} \right. \end{aligned}$$
(39)

Rearranging the sums in (39) we can finally write

$$\begin{aligned} Cu_i \in S^{\bot }\Leftrightarrow \left\{ {\begin{array}{l} \sum \limits _{m=1}^k {c_{m1} =\sum \limits _{m=1}^k {c_{m,i+1} } } \\ \sum \limits _{m=k+1}^n {c_{m1} =\sum \limits _{m=k+1}^n {c_{m,i+1} } } \\ \end{array}} \right. \end{aligned}$$
(40)

But using the hyppothesis that the connectivity matrix can be partitioned into four submatrices of equal column sum given in Eq. (15) we can verify that \(\sum \nolimits _{m=1}^k {c_{m1} =\sum \nolimits _{m=1}^k {c_{m,i+1} ={\alpha }^{\prime }}}\) and that \(\sum \nolimits _{m=k+1}^n {c_{m1} =\sum \nolimits _{m=k+1}^n {c_{m,i+1} ={\gamma }^{\prime }}}\) for all \(i=1,2,\ldots ,k-1\). Therefore, (40) implies that \(Cu_i \in S^{\bot }\) for all \(i=1,2\ldots ,k-1\).

We can follow the same steps of the above argument to show that \(Cw_i\in S^{\bot }\) for all \(i=1,2,\ldots ,n-k-1\). It is important to notice that similar to the previous case, the vectors \(Cw_i\)’s can be written as a linear combination of the elements of the basis \(B_{S^{\bot }}\). Thus, \(i=1,2,\ldots ,n-k-1\) we can have

$$\begin{aligned} Cw_i= & {} a_{1,k-1+i} u_1 +\cdots +a_{k-1,k-1+i} u_{k-1} +a_{k,k-1+i}w_1\nonumber \\&+\cdots +a_{n-2,k-1+i} w_{n-k-1}, \end{aligned}$$
(41)

where the coefficients are given by

$$\begin{aligned} \left\{ {\begin{array}{ll} a_{m,k-1+i} =-c_{m+1,k+1} +c_{m+1,k+i+1},&{}\quad m=1,2,\ldots ,k-1 \\ a_{m,k-1+i} =-c_{m+2,k+1} +c_{m+2,k+i+1},&{}\quad m=k,k+1,\ldots ,n-2. \\ \end{array}} \right. \end{aligned}$$
(42)

Lemma 2

The entries of the matrix \(\tilde{C}\) are given in (23).

Proof

The columns of the matrix \(J_{B_{S\bot }}(s_t)\) are the vectors \(J(s_t)u_i\), \(i=1,2,\ldots ,k-1\) and \(J(s_t)w_i\), \(i=1,2,\ldots ,n-k-1\). Using (12) we can write,

$$\begin{aligned} J(s_t ) u_i =(I-\mu (I-C))D_t u_i,\quad i=1,2,\ldots ,k-1. \end{aligned}$$
(43)

Observe that as a consequence of (13) we have \(D_tu_i={f}^{\prime }(x_t)u_i\), thus

$$\begin{aligned} J(s_t)u_i=(1-\mu ){f}^{\prime }(x_t)u_i+\mu {f}^{\prime }(x_t)Cu_i. \end{aligned}$$
(44)

But, from Lemma 1, \(S^{\bot }\) is C-invariant, thus \(Cu_i\) is a linear combination of the vectors in \(B_{S^{\bot }}\) and consequently

$$\begin{aligned} J(s_t)u_i= & {} (1-\mu ){f}^{\prime }(x_t )u_i \nonumber \\&+\;\mu {f}^{\prime }(x_t ) \left( {\sum \limits _{m=1}^{k-1} {a_{mi} u_m +\sum \limits _{m=1}^{n-k-1} {a_{k-1+m,i}w_m}}}\right) ,\quad i=1,2,\ldots ,k-1.\nonumber \\ \end{aligned}$$
(45)

Regrouping the terms we may write,

$$\begin{aligned} J(s_t)u_i= & {} b_{1,i} u_1 +\cdots +b_{k-1,i} u_{k-1} +b_{k,i} w_1 +\cdots +b_{n-2,i} w_{n-k-1},\nonumber \\&i=1,2,\ldots ,k-1, \end{aligned}$$
(46)

where the coefficients of the above linear combination are given by

$$\begin{aligned} b_{mi} =\left\{ {\begin{array}{ll} \mu a_{mi} {f}^{\prime }(x_t ),&{}\quad m\ne i \\ (1-\mu (1-a_{mm} )){f}^{\prime }(x_t ),&{}\quad m=i \\ \end{array}} \right. \end{aligned}$$
(47)

\(m=1,2,\ldots ,n-2,\quad i=1,2,\ldots ,k-1\). Similar calculations lead to

$$\begin{aligned} J(s_t )w_i= & {} b_{1,k-1+i} u_1 +\cdots +b_{k-1,k-1+i} u_{k-1} +b_{k,k-1+i} w_1 \nonumber \\&+\cdots +b_{n-2,k-1+i} w_{n-k-1}, \end{aligned}$$
(48)

where

$$\begin{aligned} b_{m,k-1+i}=\left\{ {\begin{array}{ll} \mu a_{m,k-1+i} {g}^{\prime }(y_t ),&{}\quad m\ne k-1+i \\ (1-\mu (1-a_{mm} )){g}^{\prime }(y_t ),&{}\quad m=k-1+i \\ \end{array}} \right. \end{aligned}$$
(49)

\(m=1,2,\ldots ,n-2,\quad i=1,2,\ldots ,n-k-1\). The coefficients on the left hand side of (47) and (49) are the entries of the matrix \(J_{B_{S\bot }}(s_t)\). Define the n \(-\) 2 \(\times \) n \(-\) 2 matrix A with the entries given in (38) and (42). As a consequence of (47) and (49) we can write

$$\begin{aligned} J_{B_{S\bot } } (s_t )=(I-\mu (I-A))\tilde{D}_t. \end{aligned}$$
(50)

It follows from a comparison of (50) with (21) that \(\tilde{C}=A\). The formulas in (23) are obtained by reindexing the entries in (38) and (42).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.A.L. Cluster formation in a heterogeneous metapopulation model. J. Math. Biol. 72, 1531–1553 (2016). https://doi.org/10.1007/s00285-015-0916-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0916-x

Keywords

Mathematics Subject Classification

Navigation