Skip to main content
Log in

Computational haemodynamics in stenotic internal jugular veins

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An association of stenotic internal jugular veins (IJVs) to anomalous cerebral venous hemodynamics and Multiple Sclerosis has been recently hypothesized. In this work, we set up a computational framework to assess the relevance of IJV stenoses through numerical simulation, combining medical imaging, patient-specific data and a mathematical model for venous occlusions. Coupling a three-dimensional description of blood flow in IJVs with a reduced one-dimensional model for major intracranial veins, we are able to model different anatomical configurations, an aspect of importance to understand the impact of IJV stenosis in intracranial venous haemodynamics. We investigate several stenotic configurations in a physiologic patient-specific regime, quantifying the effect of the stenosis in terms of venous pressure increase and wall shear stress patterns. Simulation results are in qualitative agreement with reported pressure anomalies in pathological cases. Moreover, they demonstrate the potential of the proposed multiscale framework for individual-based studies and computer-aided diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. This assumption was also verified a posteriori, computing the value of shear rates from the numerical results of exploratory simulations, which resulted to be always larger than \(1 \, \mathrm{s}^{-1}\), below which non-Newtonian effects becomes important (Formaggia et al. 2001, chapter 6).

References

  • Alastruey J, Parker KH, Peiró J, Sherwin SJ (2008) Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun Comput Phys 4:317–336

    MathSciNet  Google Scholar 

  • Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imag 23(6):704–713

    Article  Google Scholar 

  • Berger SA, Jou LD (2000) Flow in stenotic vessels. Annu Rev Fluid Mech 32:347–382

    Article  MathSciNet  Google Scholar 

  • Bertoglio C, Caiazzo A (2014) A tangential regularization method for backflow stabilization in hemodynamics. J Comp Phys (in press). doi:10.1016/j.jcp.2013.12.057

  • Blanco PJ, Pivello MR, Urquiza SA, Feijóo RA (2009) On the potentialities of 3D–1D coupled models in hemodynamics simulations. J Biomech 42:919–930

    Article  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–768

    Article  MATH  MathSciNet  Google Scholar 

  • Coen M, Menegatti E, Salvi F, Mascoli F, Zamboni P, Gabbiani G, Bochaton-Piallat ML (2013) Altered collagen expression in jugular veins in multiple sclerosis. Cardiovasc Pathol 22(1):33–38. doi:10.1016/j.carpath.2012.05.005

    Google Scholar 

  • Correa CD, Hero R, Ma KL (2011) A comparison of gradient estimation methods for volume rendering on unstructured meshes. IEEE Trans Vis Comput Graph 17(3):305–319. doi:10.1109/TVCG.2009.105

    Article  Google Scholar 

  • Dumbser M, Enaux C, Toro EF (2008) Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comput Phys 227:3971–4001

    Article  MATH  MathSciNet  Google Scholar 

  • Dumbser M, Toro EF (2011) A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J Sci Comput 48:70–88

    Article  MATH  MathSciNet  Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comp Meth Appl Mech Eng 191(6–7):561–582

    Article  MATH  MathSciNet  Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2002) Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J Numer Anal 40(1):376–401

    Article  MATH  MathSciNet  Google Scholar 

  • Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Milano

    Book  Google Scholar 

  • Fukusumi A, Okudera T, Takahashi S, Taoka T, Sakamoto M, Nakagawa H, Takayama K, Kichikawa K, Iwasaki S (2010) Anatomical evaluation of the dural sinuses in the region of the torcular herophili using three dimensional CT venography. Acad Radiol 17:1103–1111

    Article  Google Scholar 

  • Guermond J, Minev P, Shen J (2006) An overview of projection methods for incompressible ows. Comput Methods Appl Mech Eng 195:6011–6045

    Article  MATH  MathSciNet  Google Scholar 

  • Guibert R, McLeod K, Caiazzo A, Mansi T, Fernández M, Sermesant M, Pennec X, Vignon-Clementel I, Boudjemline Y, Gerbeau JF (2014) Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images. Med Image Anal 18(1):63–82

    Article  Google Scholar 

  • Si H (2013) TetGen: a quality tetrahedral mesh generator and a 3D Delaunay triangulator. Tech Rep 1762, WIAS, Berlin

  • Haond C, Ribreau C, Boutherin-Falson O, Finet M (1999) Laminar flow through a model of collapsed veins. morphometric response of endothelial vascular cells to a longitudinal shear stress non uniform cross-wise. Eur J Appl Physiol 8:87–96f

    Article  Google Scholar 

  • Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos E, Marmarelis V (2007) Wall shear stress: theoretical considerations and methods of measurement. Progr Cardiovasc Dis 49(5):307–329

    Article  Google Scholar 

  • Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997. doi:10.1016/j.jacc.2011.06.066

    Google Scholar 

  • LaDisa JF, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6(5):432–443. doi:10.1111/j.1747-0803.2011.00553.x

  • Liang F, Takagi S, Himeno R (2009) Milti-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Comput 47:743–755

    Article  Google Scholar 

  • Montecinos GI, Castro CE, Dumbser M, Toro EF (2012) Comparison of solvers for the generalized riemann problem for hyperbolic systems with source terms. J Comput Phys 231:6472–6494

    Article  MATH  MathSciNet  Google Scholar 

  • Müller LO, Toro EF (2013) Well-balanced high-order solver for blood flow in networks of vessels with variable properties. Int J Numer Meth Biomed Eng 29(12):1388–1411. doi:10.1002/cnm.2580

    Google Scholar 

  • Müller LO, Toro EF (2014) A global multiscale model for the human circulation with emphasis on the venous system. Int J Numer Meth Biomed Eng. Published online in Wiley Online Library (wileyonlinelibrary.com). doi:10.1002/cnm.2622

  • Munson BR, Young DF, Okiishi TH, Huebsch BW (2009) Fundamentals of fluid mechanics, 6th edn. Si Version. Wiley India Pvt. Ltd. http://books.google.it/books?id=eI49XwAACAAJ

  • Labropoulos N, Borge M, Pierce K, Pappas PJ (2007) Criteria for defining significant central vein stenosis with duplex ultrasound. J Vasc Surg 46(1):101–107

    Article  Google Scholar 

  • Papaioannous T, Stefanadis C (2005) Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol 46:9–15

    Google Scholar 

  • Passerini T, De Luca M, Formaggia L, Quarteroni A, Veneziani A (2009) A 3D/1D geometrical multiscale model of cerebral vasculature. J Eng Math 64:319–330

    Article  MATH  Google Scholar 

  • Pedley TJ, Brook BS, Seymour RS (2004) Blood pressure and flow rate in the giraffe jugular vein. Phil Trans R Soc Lond B 351:855–866

    Article  Google Scholar 

  • Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. Handbook of numerical analysis 12:31–127

    Google Scholar 

  • Seeley BD, Young DF (1976) Effect of geometry on pressure losses across models of arterial stenoses. J Biomech 9:439–448

    Article  Google Scholar 

  • Sherwin SJ, Franke V, Peiró J, Parker KH (2003) One-dimensional modelling of a vascular network in space–time variables. J Eng Math 47:217–250

    Article  MATH  Google Scholar 

  • Temam R (1977) The Navier–Stokes equations, theory and numerical analysis. Oxford, Amsterdam, New York

  • Thomas JB, Antiga L, Che S, Milner JS, Steinman DAH, Spence JD, Rutt BK, Steinman DA (2005) Variation in the carotid bifurcation geometry of young vs older adults: implications for geometric risk of atherosclerosis. Stroke 36(11):2450–2456

    Article  Google Scholar 

  • Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd edn. Springer, Berlin. ISBN: 978-3-540-25202-3

  • Toro EF, Siviglia A (2013) Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Commun Comput Phys 13(2):361–385

    MathSciNet  Google Scholar 

  • Toro EF, Millington R, Nejad LAM (2001) Towards very high order Godunov schemes. In: Toro EF (ed) Godunov methods. Theory and applications, vol 1, pp 897–902. Kluwer/Plenum Academic Publishers, New York. Conference in Honour of S K Godunov

  • Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE (2011) Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J Biomech Eng Trans ASME 133(11). doi:10.1115/1.4005377

  • Utriainen D, Feng W, Elias S, Latif Z, Hubbard D, Haacke EM (2012) Using magnetic resonance imaging as a means to study chronic cerebral spinal venous insufficiency in multiple sclerosis patients. Tech Vasc Interv Rad 15:101–112

    Article  Google Scholar 

  • Vignon-Clementel I, Figueroa C, Jansen K, Taylor C (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Meth Biomech Biomed Eng 111(3):502–513

    Google Scholar 

  • Westerhof N, Bosman F, DeVries CJ, Noordergraaf A (1969) Analogue studies of the human systemic arterial tree. J Biomech 2:121–143

    Article  Google Scholar 

  • Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL (2006) Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J Vasc Surg 44(6):1254–1265. doi:10.1016/j.jvs.2006.08.026

    Google Scholar 

  • Zamboni P, Galeotti R (2010) The chronic cerebrospinal venous insufficiency syndrome. Phlebology 25:269–279

    Article  Google Scholar 

  • Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, Dall’Ara S, Bartolomei I, Salvi F (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80:392–399

    Article  Google Scholar 

  • Zamboni P, Menegatti E, Bartolomei I, Galeotti R, Malagoni A, Tacconi G, Salvi F (2007) Intracranial venous haemodynamics in multiple sclerosis. Curr Neurovasc Res 4:252–258

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by CARITRO (Fondazione Cassa di Risparmio di Trento e Rovereto, Italy), project No. 2011.0214. The numerical simulations have been partially carried out with the finite element solver Mistral, developed in cooperation with Dr. J. F. Gerbeau and the research team REO, INRIA Paris-Rocquencourt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Montecinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caiazzo, A., Montecinos, G., Müller, L.O. et al. Computational haemodynamics in stenotic internal jugular veins. J. Math. Biol. 70, 745–772 (2015). https://doi.org/10.1007/s00285-014-0778-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-014-0778-7

Keywords

Mathematics Subject Classification (2010)

Navigation