Skip to main content
Log in

The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)—CRISPR-associated protein (Cas) is a microbial adaptive immune system. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which has revolutionized the genome editing approaches through multiple distinct features such as using T-rich protospacer-adjacent motif, applying a short guide RNA lacking trans-activating crRNA, introducing a staggered double-strand break, and possessing RNA processing activity in addition to DNA nuclease activity. In the present review, we attempt to highlight most recent advances in CRISPR-Cpf1 (CRISPR-Cas12a) system in particular, considering ground expeditions of the nature and the biology of this system, introducing novel Cpf1 variants that have broadened the versatility and feasibility of CRISPR-Cpf1 system, and lastly the great impact of the CRISPR-Cpf1 system on the manipulation of the genome of prokaryotic, mammalian, and plant models is summarized. With regard to recent developments in utilizing the CRISPR-Cpf1 system in genome editing of various organisms, it can be concluded with confidence that this system is a reliable molecular toolbox of genome editing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alcon P, Montoya G, Stella S (2017) Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallogr F 73(Pt 7):409–415. https://doi.org/10.1107/S2053230X1700838X

    Article  CAS  Google Scholar 

  2. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayat H, Omidi M, Rajabibazl M, Sabri S, Rahimpour A (2017) The CRISPR growth spurt: from bench to clinic on versatile small RNAs. J Microbiol Biotechnol 27(2):207–218. https://doi.org/10.4014/jmb.1607.07005

    Article  PubMed  Google Scholar 

  4. Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39(3):428–441. https://doi.org/10.1093/femsre/fuv023

    Article  CAS  PubMed  Google Scholar 

  5. Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I (2017) CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucleic Acids 7:211–222. https://doi.org/10.1016/j.omtn.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. https://doi.org/10.1038/nbt.3437

    PubMed  PubMed Central  Google Scholar 

  8. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522–526. https://doi.org/10.1038/nature17944

    Article  CAS  PubMed  Google Scholar 

  9. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  PubMed  Google Scholar 

  10. Dow LE (2015) Modeling disease in vivo with CRISPR/Cas9. Trends Mol Med 21(10):609–621. https://doi.org/10.1016/j.molmed.2015.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. https://doi.org/10.1007/s00253-015-6508-2

    Article  CAS  PubMed  Google Scholar 

  12. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121. https://doi.org/10.1038/nmeth.2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fagerlund RD, Staals RH, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251. https://doi.org/10.1186/s13059-015-0824-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89–100. https://doi.org/10.1038/nrd.2016.238

    Article  CAS  PubMed  Google Scholar 

  15. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. https://doi.org/10.1038/nature17945

    PubMed  Google Scholar 

  16. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol. https://doi.org/10.1038/nbt.3900

    Google Scholar 

  18. Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ (2016) Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26(8):901–913. https://doi.org/10.1038/cr.2016.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148. https://doi.org/10.1186/s13059-016-1012-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358. https://doi.org/10.1126/science.1192272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heider SA, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10(8):1170–1184. https://doi.org/10.1002/biot.201400590

    Article  CAS  PubMed  Google Scholar 

  22. Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412. https://doi.org/10.1128/JB.01415-07

    Article  CAS  PubMed  Google Scholar 

  23. Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807–808. https://doi.org/10.1038/nbt.3596

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179. https://doi.org/10.1038/ncomms15179

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  26. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. https://doi.org/10.1126/science.1247997

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:253. https://doi.org/10.1186/s13059-015-0818-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kato T, Takada S (2017) In vivo and in vitro disease modeling with CRISPR/Cas9. Brief Funct Genomics 16(1):13–24. https://doi.org/10.1093/bfgp/elw031

    Article  PubMed  Google Scholar 

  29. Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479–480:213–220. https://doi.org/10.1016/j.virol.2015.02.024

    Article  PubMed  Google Scholar 

  30. Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-sEq. Genome Res 26(3):406–415. https://doi.org/10.1101/gr.199588.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868. https://doi.org/10.1038/nbt.3609

    Article  CAS  PubMed  Google Scholar 

  32. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12(3):237–243. https://doi.org/10.1038/nmeth.3284 (231 p following 243)

    Article  CAS  PubMed  Google Scholar 

  33. Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406. https://doi.org/10.1038/ncomms14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 14(2):153–159. https://doi.org/10.1038/nmeth.4104

    Article  CAS  PubMed  Google Scholar 

  35. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS (2017) Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27(3):419–426. https://doi.org/10.1101/gr.219089.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim SK, Kim H, Ahn WC, Park KH, Woo EJ, Lee DH, Lee SG (2017) Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol. https://doi.org/10.1021/acssynbio.6b00368

    PubMed Central  Google Scholar 

  37. Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34(8):808–810. https://doi.org/10.1038/nbt.3614

    Article  CAS  PubMed  Google Scholar 

  38. Kleinstiver B, Prew M, Tsai S, Topkar V, Nguyen N, Zheng Z (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:4

    Article  Google Scholar 

  39. Kleinstiver BP, Pattanayak V, Prew MS, Nguyen QS, Zheng NT, Joung Z JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. https://doi.org/10.1038/nature16526

    PubMed  PubMed Central  Google Scholar 

  40. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1–2):20–36. https://doi.org/10.1016/j.cell.2016.10.044

    Article  CAS  PubMed  Google Scholar 

  42. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276. https://doi.org/10.1093/nar/gkw398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lei C, Li SY, Liu JK, Zheng X, Zhao GP, Wang J (2017) The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45(9):e74. https://doi.org/10.1093/nar/gkx018

    PubMed  PubMed Central  Google Scholar 

  44. Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, Dong Y (2017) Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat Biomed Eng. https://doi.org/10.1038/s41551-017-0066

    Google Scholar 

  45. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147. https://doi.org/10.1126/science.aad5147

    Article  PubMed  Google Scholar 

  46. Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20(9):1574–1584. https://doi.org/10.1016/j.str.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimasu H, Yamano T, Gao L, Zhang F, Ishitani R, Nureki O (2017) Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Mol Cell. https://doi.org/10.1016/j.molcel.2017.04.019

    Google Scholar 

  48. Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85(2):155–163. https://doi.org/10.1016/j.mimet.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  49. Qi L, Larson M, Gilbert L, Doudna J, Weissman J, Arkin A, Lim W (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):10. https://doi.org/10.1016/j.cell.2013.02.022

    Article  Google Scholar 

  50. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):28. https://doi.org/10.1038/nprot.2013.143

    Article  Google Scholar 

  51. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  54. Stella S, Alcon P, Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546(7659):559–563. https://doi.org/10.1038/nature22398

    CAS  PubMed  Google Scholar 

  55. Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10(4):e0124633. https://doi.org/10.1371/journal.pone.0124633

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67. https://doi.org/10.1038/nature13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA 111(27):9798–9803. https://doi.org/10.1073/pnas.1402597111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018. https://doi.org/10.1038/nplants.2017.18

    Article  CAS  PubMed  Google Scholar 

  59. Toth E, Weinhardt N, Bencsura P, Huszar K, Kulcsar PI, Talas A, Fodor E, Welker E (2016) Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 11:46. https://doi.org/10.1186/s13062-016-0147-0

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197. https://doi.org/10.1038/nbt.3117

    Article  CAS  PubMed  Google Scholar 

  61. Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx783

    Google Scholar 

  62. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681. https://doi.org/10.1038/srep39681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wendisch VF, Jorge JMP, Perez-Garcia F, Sgobba E (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32(6):105. https://doi.org/10.1007/s11274-016-2060-1

    Article  PubMed  Google Scholar 

  64. White MF (2016) Cpf1 shape-shifts for streamlined CRISPR cleavage. Nat Struct Mol Biol 23(5):365–366. https://doi.org/10.1038/nsmb.3225

    Article  PubMed  Google Scholar 

  65. Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717. https://doi.org/10.1111/pbi.12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol Cell 67(4):633–645 e633. https://doi.org/10.1016/j.molcel.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  67. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962. https://doi.org/10.1016/j.cell.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83 (17). https://doi.org/10.1128/AEM.00947-17

  69. Yang M, Wei H, Wang Y, Deng J, Tang Y, Zhou L, Guo G, Tong A (2017) Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1. Mol Ther Nucleic Acids 8:450–458. https://doi.org/10.1016/j.omtn.2017.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22(7):550–553. https://doi.org/10.1016/j.tplants.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  71. Zetsche B, Strecker J, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F (2017) A survey of genome editing activity for 16 Cpf1 orthologs. bioRxiv. https://doi.org/10.1101/134015

    Google Scholar 

  72. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3:17018. https://doi.org/10.1038/celldisc.2017.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y, Rajan R, Seifert HS, Mondragon A, Sontheimer EJ (2015) DNase H activity of Neisseria meningitidis Cas9. Mol Cell 60(2):242–255. https://doi.org/10.1016/j.molcel.2015.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503. https://doi.org/10.1016/j.molcel.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814. https://doi.org/10.1126/sciadv.1602814

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin ZB, Qu J, Gu F (2014) Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep 4:5405. https://doi.org/10.1038/srep05405

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhong G, Wang H, Li Y, Tran MH, Farzan M (2017) Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat Chem Biol. https://doi.org/10.1038/nchembio.2410

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Medical Nano-Technology & Tissue Engineering Research Center and School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Rahimpour.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, H., Modarressi, M.H. & Rahimpour, A. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Curr Microbiol 75, 107–115 (2018). https://doi.org/10.1007/s00284-017-1406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1406-8

Navigation