Skip to main content

Advertisement

Log in

Common Mechanism of Cross-Resistance Development in Pathogenic Bacteria Bacillus cereus Against Alamethicin and Pediocin Involves Alteration in Lipid Composition

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

To understand the mechanism of development of cross-resistance in food pathogen Bacillus cereus against an antimicrobial peptide pediocin and antibiotic alamethicin, the present study was designed. Pediococcus pentosaceus was taken as a source of pediocin, and it was purified by ammonium sulphate precipitation followed by cation exchange chromatography with 14.01-fold purity and 14.4 % recovery. B. cereus strains alamethicin-resistant strains (IC50 3.23 µg/ml) were selected from sensitive population with IC50 2.37 µg/ml. The development of resistance in B. cereus against alamethicin was associated with decrease in alamethicin-membrane interaction observed by in vitro assay. Resistant strain of B. cereus was found to harbour one additional general lipid as compared to sensitive strain, one amino group lacking phospholipid and one amino group containing phospholipid (ACP). In addition, ACP content was increased in resistant mutant (29.7 %) as compared to sensitive strain (14.56 %). The alamethicin-resistant mutant B. cereus also showed increased IC50 (58.8 AU/ml) for pediocin as compared to sensitive strain (IC50 47.8 AU/ml). Cross-resistance to pediocin and alamethicin in resistant mutant of B. cereus suggested a common mechanism of resistance. Therefore, this understanding could result in the development of peptide which will be effective against the resistant strains that share same mechanism of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo SP, Yeaman MR (2000) In Vitro Resistance of Staphylococcus aureus to Thrombin-Induced Platelet Microbicidal Protein is Associated with Alterations in Cytoplasmic Membrane Fluidity. Infect and Immun 68(6):3548–3553

    Article  CAS  Google Scholar 

  2. Beven L, Helluin O, Molle G, Duclohier H, Wroblewski H (1999) Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel forming peptides. Biochim Biophys Acta 1421(1):53–63

    Article  CAS  PubMed  Google Scholar 

  3. Billing E, Cuthbert WA (1958) “Bitty” cream: the occurrence and significance of Bacillus cereus spores in raw milk supplies. J Appl Microbiol 21:65–78

    Google Scholar 

  4. Bligh EG, Dyer EJ (1959) A Rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  5. Cabo ML, Murado MA, Gonzalez MP, Pastoriza L (1999) A method for bacteriocin quantification. J Appl Microbiol 87(6):907–914

    Article  CAS  PubMed  Google Scholar 

  6. Charych DH, Nagy JO, Spevak W, Bednarski MD (1993) Direct colorimetric detection of a receptor-ligand interaction by polymerized bilayer assembly. Science 261(5121):585–588

    Article  CAS  PubMed  Google Scholar 

  7. Chen F, Lee M, Hang HW (2002) Sigmoidal concentration dependence of antimicrobial peptide activities: a case study of alamethicin. Biophysics J 82:908–914

    Article  CAS  Google Scholar 

  8. Cleveland J, Montvik TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  9. Crandall AD, Montville TJ (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64(1):231–237

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Coghill D, Juffs HS (1979) Incidence of psychrotrophic bacteria in pasteurized milk and cream products and effect of temperature on their growth. Aust J Dairy Technol 34:150–153

    Google Scholar 

  11. Eneroth A, Svensson B, Molin G, Christiansson A (2001) Contamination of pasteurized milk by Bacillus cereus in the filling machine. J Dairy Res 68:189–196

    Article  CAS  PubMed  Google Scholar 

  12. Food and Drug Administration (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Food and Drug Administration. Federal Register 53:11247

    Google Scholar 

  13. Ghelardi E, Celandroni F, Salvetti S, Barsoti C, Baggiani A, Senesi S (2002) Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol Lett 208:129–134

    Article  CAS  PubMed  Google Scholar 

  14. Granum PE, Brynestad S, Kramer JM (1993) Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and nongastrointestinal infection. Int J Food Microbiol 17:269–279

    Article  CAS  PubMed  Google Scholar 

  15. Gravesen A, Ramnath M, Rechinger KB, Anderesen N, Jansch L, Hechard Y, Hastings J, Knochel S (2001) High level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369

    Article  Google Scholar 

  16. Heu S, Oh JH, Kang YS, Ryu S, Cho SK, Cho YS, Cho M (2001) Cloning, expression, and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl Environ Microbiol 67:4105–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ingham AB, Ford MRJ, Tizard M (2003) The bacteriocin pisicicolin126 retains antilisterial activity in vivo. J Antimicrob Chemother 51:1365–1371

    Article  CAS  PubMed  Google Scholar 

  18. Jonas U, Shah K, Norvez S, Charych DH (1999) Reversible color switching and unusual solution polymerization of hydrazide modified diacetylene lipids. J Am Chem Soc 121(19):4580–4588

    Article  CAS  Google Scholar 

  19. Kahovcova J, Odavic R (1969) A simple method for the quantitative analysis of phospholipids separated by thin layer chromatography. J Chromatogr 40:90–96

    Article  CAS  PubMed  Google Scholar 

  20. Katz SS, Weinrauch Y, Munford RS, Weiss EP (1999) Deacylation of PS in whole E. coli during destruction by cellular and extracellular components of a rabbit peritoneal inflammatory exudate. J Biol Chem 274:36579–36584

    Article  CAS  PubMed  Google Scholar 

  21. Klaenhammer TR. (1993) Antimicrobial and bacteriocin interactions of the lactic acid bacteria. In: Proceedings of the 6th International Symposium on Genetics & Industrial Microorganisms (Heslot H, Davies J, Florent J, Bobichon L, Durand G, Penasse L, eds). French Society of Microbiol 1:433–445

  22. Kolusheva S, Shalal T, Jelinek R (2000) Peptide-membrane interactions studied by a new phospholipid-polydiacetylene colorimetric assay. Biochemistry 39:15851–15859

    Article  CAS  PubMed  Google Scholar 

  23. Mehla J, Sood SK (2011) Substantiation in Enterococcus faecalis of dose dependent resistance and cross resistance to pore forming antimicrobial peptides by use of a polydiacetylene based colorimetric assay. Appl Environ Microbiol 77(3):786–793

    Article  CAS  PubMed  Google Scholar 

  24. Ming X, Daeschel MA (1995) Correlation of cellular phospholipid content with nisin resistance of Listeria monocytogenes. Scott A. J Food Prot 58:416–420

    CAS  Google Scholar 

  25. Moll GN, Clark J, Chan WC, Bycroft BW, Roberts GC, Konings WN, Driessen AJ (1997) Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol 179(1):135–140

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Overcast WW, Atmaram K (1974) The role of Bacillus cereus in sweet curdling of fluid milk. J Milk Food Technol 37:233–236

    Google Scholar 

  27. Pirttijarvi TSM, Andersson MA, Salkinoja-Salonen MS (2000) Properties of Bacillus cereus and other bacilli contaminating biomaterial-based industrial processes. Int J Food Microbiol 60(2–3):231–239

    Article  CAS  PubMed  Google Scholar 

  28. Rekhif N, Atrih A, Lefebvre G (1994) Characterization and partial purification of plantaricin LC74, a bacteriocin produced by Lactobacillus plantarum LC74. Biotech Lett 16(8):771–776

    Article  CAS  Google Scholar 

  29. Sakayori Y, Muramatsu M, Hanada S, Kamagata Y, Kawamoto S, Shima J (2003) Characterization of Enterococcus faecium mutants resistant to mundticin KS, a class Ila bacteriocin. Microbiology 149(10):2901–2908

    Article  CAS  PubMed  Google Scholar 

  30. Sansom MSP (1993) Alamethicin and related peptaibols: model ion channels. Eur Biophys J 22:105–124

    Article  CAS  PubMed  Google Scholar 

  31. Sood SK, Sinha PR (2003) Analysis of structure of YGNGV motif containing bacteriocins: a model for pore formation. Indian J Biotech 2:227–235

    CAS  Google Scholar 

  32. Sood SK, Simha V, Kumariya R, Garsa AK, Mehla J, Meena S, Lather P (2013) Highly specific culture-independent detection of YGNGV motif-containing pediocin-producing strains. Probiotics & Antimicro Prot 5(1):37–42

    Article  CAS  Google Scholar 

  33. te Giffel MC, Beumer RR, Bonestroo MH, Rombouts FM (1996) Incidence characterization of Bacillus cereus in two dairy processing plants. Neth Milk Dairy J 50:479–492

    Google Scholar 

  34. Thippeswamy HS, Sood SK, Venkateswarlu R, Raj I (2009) Membranes of fivefold alamethicin resistant Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. Ann Microbiol 59(3):593–601

    Article  CAS  Google Scholar 

  35. Vadyvaloo V, Hastings JW, Marthinus J, van der M, Rautenbach M (2002) Membranes of class IIa bacteriocin- resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68(11):5223–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verheul A, Russel NJ, Hof RVT, Rombouts M, Abee T (1997) Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl Environ Microbiol 63(9):3451–3457

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang L, Harroum TA, Weiss TM (2001) Barrel stave model or Toroidal model? A case study on Melitin pores. Biophysics J 8:1475–1485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Meena.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, S., Mehla, J., Kumar, R. et al. Common Mechanism of Cross-Resistance Development in Pathogenic Bacteria Bacillus cereus Against Alamethicin and Pediocin Involves Alteration in Lipid Composition. Curr Microbiol 73, 534–541 (2016). https://doi.org/10.1007/s00284-016-1090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1090-0

Keywords

Navigation