Skip to main content

Advertisement

Log in

Changes in Microbial Composition of Wastewater During Treatment in a Full-Scale Plant

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The monitoring of wastewater treatment plants is important for their proper functioning as well as for re-use of water and also to avoid possible circulation of human or animal pathogens in our environment. The samples in this study originated from a full-scale wastewater treatment plant where the structure of the bacterial community was monitored using 454-pyrosequencing. The composition differed in different parts of the plant. In the effluent, bacteria belonging to phyla Proteobacteria, Actinobacteria, TM7 and Bacteroidetes were most frequently detected. The presence of Mycobacterium sp., Mycobacterium avium, Norovirus, Hepatitis A and E viruses was examined using quantitative real-time PCR. Mycobacterium sp. was detected in the effluent in quantities of up to 104 cells/ml. Mycobacterium avium subsp. paratuberculosis and subsp. hominissuis were detected in amounts of up to 103 cells/ml, and Norovirus group 1 and 2 were also detected. Our findings show the importance of monitoring and controlling the occurrence of specific pathogens in effluent, mainly because of the negative impact on human health when the water is reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bibby K, Viau E, Peccia J (2010) Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44:4252–4260. doi:10.1016/j.watres.2010.05.039

    Article  PubMed  CAS  Google Scholar 

  2. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Carducci A, Morici P, Pizzi F, Battistini R, Rovini E, Verani M (2008) Study of the viral removal efficiency in a urban wastewater treatment plant. Water Sci Technol 58(4):893–897. doi:10.2166/wst.2008.437

    Article  PubMed  CAS  Google Scholar 

  4. Helbling DE, Johnson DR, Lee TK, Scheidegger A, Fenner K (2015) A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. Water Res 70:471–484. doi:10.1016/j.watres.2014.12.013

    Article  PubMed  CAS  Google Scholar 

  5. Hu M, Wang XH, Wen XH, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79

    Article  PubMed  CAS  Google Scholar 

  6. Ibekwe AM, Leddy M, Murinda SE (2013) Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing. PLoS ONE 8(11):e79490. doi:10.1371/journal.pone.0079490

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson DR, Lee TK, Park J, Fenner K, Helbling DE (2014) The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol. doi:10.1111/1462-2920.12429

    Google Scholar 

  8. Kaevska M, Slana I, Kralik P, Reischl U, Orosova J, Holcikova A, Pavlik I (2011) “Mycobacterium avium subsp. hominissuis” in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. J Clin Microbiol 49(1):167–172

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kwon S, Kim TS, Yu GH, Jung JH, Park HD (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 20(12):1717–1723. doi:10.4014/jmb.1007.07012

    PubMed  Google Scholar 

  10. La Rosa G, Pourshaban M, Iaconelli M, Muscillo M (2010) Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Ann Ist Super Sanita 46(3):266–273. doi:10.4415/ANN_10_03_07

    PubMed  Google Scholar 

  11. Lee SH, Kang HJ, Park HD (2015) Influence of influent wastewater communities on temporal variation of activated sludge communities. Water Res 73:132–144. doi:10.1016/j.watres.2015.01.014

    Article  PubMed  CAS  Google Scholar 

  12. Maunula L, Kaupke A, Vasickova P, Soderberg K, Kozyra I, Lazic S, van der Poel WHM, Bouwknegt M, Rutjes S, Willems KA, Moloney R, D’Agostino M, Husman AMD, von Bonsdorff CH, Rzezutka A, Pavlik I, Petrovic T, Cook N (2013) Tracing enteric viruses in the European berry fruit supply chain. Int J Food Microbiol 167(2):177–185

    Article  PubMed  Google Scholar 

  13. McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12(2):378–392. doi:10.1111/j.1462-2920.2009.02075.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Muszynski A, Tabernacka A, Milobedzka A (2015) Long-term dynamics of the microbial community in a full-scale wastewater treatment plant. Int Biodeterior Biodegrad 100:44–51. doi:10.1016/j.ibiod.2015.02.008

    Article  CAS  Google Scholar 

  15. Nossa CW, Oberdorf WE, Yang LY, Aas JA, Paster BJ, DeSantis TZ, Brodie EL, Malamud D, Poles MA, Pei ZH (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Radomski N, Betelli L, Moilleron R, Haenn S, Moulin L, Cambau E, Rocher V, Goncalves A, Lucas FS (2011) Mycobacterium behavior in wastewater treatment plant, a bacterial model distinct from Escherichia coli and enterococci. Environ Sci Technol 45(12):5380–5386. doi:10.1021/Es104084c

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez O, Ferrera I, Gonzalez JM, Mas J (2013) Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microbiol Biotechnol 6(4):435–442. doi:10.1111/1751-7915.12052

    Article  Google Scholar 

  18. Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40(13):2463–2476. doi:10.1016/j.watres.2006.04.040

    Article  PubMed  CAS  Google Scholar 

  19. Slana I, Kaevska M, Kralik P, Horvathova A, Pavlik I (2010) Distribution of Mycobacterium avium subsp avium and M. a. hominissuis in artificially infected pigs studied by culture and 1S901 and IS1245 quantitative real time PCR. Vet Microbiol 144(3–4):437–443

    Article  PubMed  CAS  Google Scholar 

  20. Slana I, Kralik P, Kralova A, Pavlik I (2008) On-farm spread of Mycobacterium avium subsp paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int J Food Microbiol 128(2):250–257

    Article  PubMed  CAS  Google Scholar 

  21. Steyer A, Gutierrez-Aguirre I, Racki N, Beigot Glaser S, Brajer Humar B, Strazar M, Skrjanc I, Poljsak-Prijatelj M, Ravnikar M, Rupnik M (2015) The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol. doi:10.1007/s12560-015-9183-7

    PubMed  Google Scholar 

  22. Torvinen E, Torkko P, Rintala AN (2010) Real-time PCR detection of environmental mycobacteria in house dust. J Microbiol Methods 82(1):78–84. doi:10.1016/j.mimet.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  23. Varela AR, Manaia CM (2013) Human health implications of clinically relevant bacteria in wastewater habitats. Environ Sci Pollut R 20(6):3550–3569

    Article  CAS  Google Scholar 

  24. Vasickova P, Kralik P, Slana I, Pavlik I (2012) Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J Virol Methods 180(1–2):38–42

    Article  PubMed  CAS  Google Scholar 

  25. Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81(1–4):665–680

    Article  PubMed  CAS  Google Scholar 

  26. Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97(6):2681–2690. doi:10.1007/s00253-012-4082-4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ye L, Zhang T, Wang T, Fang Z (2012) Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing. Environ Sci Technol 46(24):13244–13252. doi:10.1021/es303454k

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The results of the project LO1218 were obtained with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Kaevska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaevska, M., Videnska, P. & Vasickova, P. Changes in Microbial Composition of Wastewater During Treatment in a Full-Scale Plant. Curr Microbiol 72, 128–132 (2016). https://doi.org/10.1007/s00284-015-0924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0924-5

Keywords

Navigation