Skip to main content

Advertisement

Log in

Potential Application in Mercury Bioremediation of a Marine Sponge-Isolated Bacillus cereus strain Pj1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sponges are sessile marine invertebrates that can live for many years in the same location, and therefore, they have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor a large number of microorganisms within their tissues. The Bacillus cereus strain Pj1 was isolated from a marine sponge, Polymastia janeirensis, and was found to be resistant to 100 μM HgCl2 and to 10 μM methylmercury (MeHg). Pj1 was also highly resistant to other metals, including CdCl2 and Pb(NO3)2, alone or in combination. The mer operon was located on the bacterial chromosome, and the volatilization test indicated that the B. cereus Pj1 was able to reduce Hg2+–Hg0. Cold vapor atomic absorption spectrometry demonstrated that Pj1 volatilized 80 % of the total MeHg that it was exposed to and produced elemental Hg when incubated with 1.5 μM MeHg. Pj1 also demonstrated sensitivity to all antibiotics tested. In addition, Pj1 demonstrated a potential for biosurfactant production, presenting an emulsification activity better than synthetic surfactants. The results of this study indicate that B. cereus Pj1 is a strain that can potentially be applied in the bioremediation of HgCl2 and MeHg contamination in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182

    Article  CAS  PubMed  Google Scholar 

  2. Ball MM, Carrero P, Castro D, Yarzábal A (2007) Mercury resistance in bacterial strains isolated from tailing ponds in a gold mining area near El Callao (Bolívar State, Venezuela). Curr Microbiol 54:149–154

    Article  CAS  PubMed  Google Scholar 

  3. Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  PubMed  Google Scholar 

  4. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance: from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  5. Boyd ES, Barkay T (2012) The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol 3:349

    PubMed Central  PubMed  Google Scholar 

  6. Calderon J, Ortiz-Perez D, Yanez L, Diaz-Barriga F (2003) Human exposure to metals. Pathways of exposure, biomarkers of effect and host factors. Ecotoxicol Environ Saf 56:93–103

    Article  CAS  PubMed  Google Scholar 

  7. Carillo P, Mardarz C, Pitta-Alvarez S (1996) Isolation and selection of biosurfactant producing bacteria. World J Microbiol Biotechnol 12:82–84

    Article  Google Scholar 

  8. Chang JS, Hong J, Ogunseitan OA, Olson HB (1993) Interaction of mercuric ions with the bacterial growth medium and its effects in enzymatic reduction of mercury. Biotechnol Prog 9:526–532

    Article  CAS  Google Scholar 

  9. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing, 23th informational supplement M100-S23. CLSI, Wayne

    Google Scholar 

  10. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    CAS  PubMed Central  PubMed  Google Scholar 

  11. De J, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5(2):185–193

    Article  CAS  PubMed  Google Scholar 

  12. De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477

    Article  CAS  PubMed  Google Scholar 

  13. Gadd GM, White C (1993) Microbial treatment of metal pollution: a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  PubMed  Google Scholar 

  14. Hardoim C, Costa R, Araújo F, Hadju E, Peixoto RS, Lins U et al (2009) Microbial diversity in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75:3331–3343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li J, Zhang L, Wu Y, Liu Y, Zhou P, Wen S et al (2009) A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in human milk in China. Chemosphere 75:1236–1242

    Article  CAS  PubMed  Google Scholar 

  16. Liebert CA, Wireman J, Smith T, Summers AO (1997) Phylogeny of mercury resistance (mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63:1066–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Maldonado M, Carmona M, Velásquez Z, Puig A, Cruzado A, López A, Young CM (2005) Siliceous sponges as a silicon sink: an overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol Oceanogr 50(3):799–809

    Article  CAS  Google Scholar 

  18. Marinho PR, Moreira APB, Pellegrino FLPC, Muricy G, Bastos MCF, Dos Santos KRN, Giambiagi-deMarval M, Laport MS (2009) Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. Mem Inst Oswaldo Cruz 104:678–682

    Article  PubMed  Google Scholar 

  19. Muricy G, Hadju E (2006) Porifera Brasilis: Guia de Identificação das Esponjas Mais Comuns do Sudeste do Brasil. Eclesiarte, Rio de Janeiro

    Google Scholar 

  20. Murtaza I, Dutt A, Mushtaq D, Ali A (2005) Molecular cloning and genetic analysis of functional merB gene from Indian isolates of Escherichia coli. Curr Microbiol 51:297–302

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura K, Nakahara H (1988) Simplified X-ray film method for detection of bacterial volatilization of mercury chloride by Escherichia coli. Appl Environ Microbiol 54:2871–2873

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Nascimento AMA, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2(1):92–101

    PubMed  Google Scholar 

  23. Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Nicolardi V et al (2010) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65:85–91

    Article  Google Scholar 

  24. Santos OCS, Pontes PVML, Santos JFM, Muricy G, Giambiagi-deMarval M, Laport MS (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161(7):604–612

    Article  CAS  PubMed  Google Scholar 

  25. Santos-Gandelman JF, Santos OC, Pontes PV, Andrade CL, Korenblum E, Muricy G, Giambiagi-deMarval M, Laport MS (2013) Characterization of cultivable bacteria from Brazilian sponges. Mar Biotechnol (NY) 15(6):668–676

    Article  CAS  Google Scholar 

  26. Selvin J, Shanmugha-Priya S, Seghal-Kiran G, Thangavelu T, Sapna-Bai N (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363

    Article  CAS  PubMed  Google Scholar 

  27. Turque AS, Cardoso AM, Silveira CB, Vieira RP, Freitas FAD, Albano RM et al (2008) Bacterial communities of the marine sponges Hymeniacidon heliophila and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil. Mar Biol 155(2):135–146

    Article  Google Scholar 

  28. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  29. Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deepsea hydrothermal vent. Appl Environ Microbiol 71:220–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang Y, Boyd E, Crane S, Lu-Irving P, Krabbenhoft D, King S et al (2011) Environmental conditions constrain the distribution and diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A. Microb Ecol 62(4):739–752

    Article  CAS  PubMed  Google Scholar 

  31. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    Article  CAS  PubMed  Google Scholar 

  32. World Health Organization (2000) Air quality guidelines for Europe. In: WHO regional publication European series, vol 91:V-S. Copenhagen, pp 1–273

  33. Youssef NH, Duncan KE, Nagle DD, Savage KH, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Chen L, Liu D (2011) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93(3):1305–1314

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro. (FAPERJ) to M. S. Laport. J. F. Santos-Gandelman is the recipient of a CAPES and FAPERJ Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinella S. Laport.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Gandelman, J.F., Cruz, K., Crane, S. et al. Potential Application in Mercury Bioremediation of a Marine Sponge-Isolated Bacillus cereus strain Pj1. Curr Microbiol 69, 374–380 (2014). https://doi.org/10.1007/s00284-014-0597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0597-5

Keywords

Navigation