Skip to main content

Advertisement

Log in

Fe and P Solubilization Under Limiting Conditions by Bacteria Isolated from Carex kobomugi Roots at the Hasaki Coast

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Our objective was simply to report a sedge species, Carex kobomugi Ohwi that has beneficial bacterial associations under low Fe and P conditions of the Hasaki coast, Japan. C. kobomugi is the dominant species in our study area and grows closest to the sea. C. kobomugi showed higher Fe and P content, while these nutrients were less available under alkaline root-zone soil. Within the roots, mycorrhizal fungal colonization was absent, and endophytic fungal colonization was low. On the contrary, endophytic bacteria (e.g. Bacillus sp., Streptomyces luteogriseus, and Pseudomonas fluorescens) were isolated, which exhibited both siderophore production and inorganic phosphate solubilization under Fe or P limited conditions. Our results suggest that colonization of root tissue by these bacteria contribute to the Fe and P uptakes by C. kobomugi by increasing availability in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

PGPB:

Plant growth-promoting bacteria

EC:

Electrical conductivity

ICP-AES:

Inductively coupled argon plasma emission spectrophotometry

CEC:

Cation exchange capacity

NB:

Nutrient broth

YGP:

Yeast–glucose–polypeptone

CAS:

Chrome azurol S

DCP:

Dicalcium phosphate

PSAI:

Phosphate-solubilizing activity index

References

  1. Abe JP, Masuhara G, Katsuya K (1994) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities I. Spore formation of Glomus spp. Predominates under a patch of Elymus mollis. Mycoscience 35:233–238

    Article  Google Scholar 

  2. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagent to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    Article  PubMed  CAS  Google Scholar 

  4. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  5. Blady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  6. Bowen HJM (1979) Environmental chemistry of the elements. In: Bowen HJM (ed) Element in the geosphere and the biosphere. Academic press, New York, pp 237–273

    Google Scholar 

  7. Braun-Blanquet J (1964) Pflanzensoziologie. Springer, Wien

    Book  Google Scholar 

  8. Brundett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  9. Brundett MC (2002) Coevolution of root and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  10. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarium biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  11. Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    Article  PubMed  CAS  Google Scholar 

  12. Chang CH, Hsieh CY, Yang SS (2001) Effect of cultural media on the phosphate-solubilizing activity of thermo-tolerant microbes. J Biomass Energy Soc China 20:79–90

    Google Scholar 

  13. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  14. de Boer W, de Ridder-Duine AS, Klein Gunnewiek PJA, Smant W, Van Veen JA (2008) Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biol Biochem 40:1542–1544

    Article  Google Scholar 

  15. de Kroon H, Visser EJW (2003) Root ecology. Springer, Berlin

    Google Scholar 

  16. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda A, Hagiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y, Mizuno T (2010) Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research laboratory (MIU), central Japan. Microb Ecol 60:214–225

    Article  PubMed  CAS  Google Scholar 

  18. Galand PE, Fritze H, Conrad R, Yrjälä K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol 71:2195–2198

    Article  PubMed  CAS  Google Scholar 

  19. Goldstain AH, Liu ST (1987) Morecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnol 5:72–74

    Article  Google Scholar 

  20. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalites and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  21. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. Wiley, London

    Google Scholar 

  22. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:859–914

    Google Scholar 

  23. Hasse PR (1971) A textbook of chemical analysis. John Murray Ltd., London, pp 375–378

    Google Scholar 

  24. Holmgren GGS (1967) A rapid citrate-dithionite extractable iron procedure. Soil Sci Soc Am Proc 31:210–211

    Article  CAS  Google Scholar 

  25. Imbert M, Bechet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  26. Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  27. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  28. Kersters K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH (1996) Recent changes in the classification of the pseudomonads; an overview. Syst Appl Microbiol 19:465–477

    Article  Google Scholar 

  29. Khan SA, Hamayun M, Kim HY, Yoon HJ, Seo JC, Choo YS (2009) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol Lett 31:283–287

    Article  PubMed  CAS  Google Scholar 

  30. Kim ST, Chung MG (1995) Genetic variation and population structure in Korean populations of sand dune species Salsola komarovi (Chenopodiaceae). J Plant Res 108:195–203

    Article  Google Scholar 

  31. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  32. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  Google Scholar 

  33. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient acquisition strategies change with soil ages. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  35. Lim CH, Jackson ML (1982) Dissolution for total elemental analysis; in methods of soil analysis, part 2. In: Page AL et al (eds) Chemical and microbiological properties, 2nd edn. American Society of Agronomy Inc. Soil Science Society of America Inc., Madison, WI, pp 1–11

    Google Scholar 

  36. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  37. Lorenz DG, Sharp WC, Ruffner JD (1991) Conservation plants for the Northeast. U.S. Dept. of Agriculture, Soil Conservation Service, Washington, DC, pp 14–42

    Google Scholar 

  38. Lucas RE, Davis JF (1961) Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci 92:177–182

    Article  CAS  Google Scholar 

  39. Lynch JM (1990) The rhizosphere. In: Campbell R, Greaves MP (eds) Anatomy and community structure of the rhizosphere. Wiley, New York, pp 11–34

    Google Scholar 

  40. Matsue N, Wada K (1985) A new equilibration method for cation exchange capacity measurement. Soil Sci Soc Am J 49:574–578

    Article  CAS  Google Scholar 

  41. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  42. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  PubMed  CAS  Google Scholar 

  43. Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685–691

    Article  PubMed  CAS  Google Scholar 

  44. Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    PubMed  CAS  Google Scholar 

  45. Mori N, Takahashi T, Yasuda T, Yanagawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett 38:6

    Article  Google Scholar 

  46. Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges-an overview. Mycorrhiza 14:65–77

    Article  PubMed  CAS  Google Scholar 

  47. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  48. Nosko P, Bliss LC, Cook FD (1994) The association of free-living nitrogen-fixing bacteria with the roots of high Arctic graminoids. Arct Alp Res 26:180–186

    Article  Google Scholar 

  49. Oba H, Saito K, Fujimiya M (2006) Method in arbuscular mycorrhizal research (2) Observation of arbuscular mycorrhizal fungi colonizing root. Soil Microorg 60:57–61 (in Japanese)

    Google Scholar 

  50. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939. U. S. Government Printing Office, Washington, DC

    Google Scholar 

  51. Playsted CWS, Johnston ME, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500

    Article  PubMed  CAS  Google Scholar 

  52. Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Amsterdam, pp 195–230

    Chapter  Google Scholar 

  53. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    Article  CAS  Google Scholar 

  54. Rozema J, Bijwaard P, Prast G, Broekman R (1985) Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Plant Ecol 62:499–521

    Article  Google Scholar 

  55. Schollenberger CJ, Simon RH (1945) Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci 59:13–24

    Article  CAS  Google Scholar 

  56. Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898

    Article  PubMed  CAS  Google Scholar 

  57. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  58. Small JA (1954) Carex kobomugi at Island Beach, New Jersey. Ecology 35:289–291

    Article  Google Scholar 

  59. Smith MJ, Neilands JB (1984) Rhizobactin, a siderophore from Rhizobium meliloti. J Plant Nutr 7:449–458

    Article  CAS  Google Scholar 

  60. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  61. Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431

    Article  Google Scholar 

  62. Ue H, Okumura T (2001) Sand fixation and grassing by vegetation bag settling on coastal sands. J Jpn Soc Reveget Tech 27:50–55 (in Japanese)

    Article  Google Scholar 

  63. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promotion and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  64. Wootton L, Halsey S, Bevaart K, McGough A, Ondreika J, Patel P (2005) When invasive species have benefits as well as costs: managing Carex kobomugi (Asiatic sand sedge) in New Jersey’s coastal dunes. Biol Invasions 7:1017–1027

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. H. Ishimoto for conducting the CAS assay, and the Chemical Analysis Division, Research Facility Center for Science and Technology, University of Tsukuba, for measuring the ICP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Yamaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, H., Akiyama, M., Kobayashi, K. et al. Fe and P Solubilization Under Limiting Conditions by Bacteria Isolated from Carex kobomugi Roots at the Hasaki Coast. Curr Microbiol 66, 314–321 (2013). https://doi.org/10.1007/s00284-012-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0276-3

Keywords

Navigation