Skip to main content
Log in

Genetic variation and population structure in Korean populations of sand dune speciesSalsola komarovi (Chenopodiaceae)

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Salsola komarovi lljin is a herbaceous annual native to the sand dunes and beaches of Japan, northern China, Sakhalln and Korea. Starch-gel electrophoresis was conducted on leaves and stems collected from 300 plants in eight Korean populations. The mean number of alleles per locus (A p=1.51), mean expected heterozygosity (He p=0.116), and total genetic diversity (H T=0.279) were comparable with those for species with similar life history and ecological traits. A general conformance of genotype frequencies to Hardy-Weinberg expectations (meanF IS=−0.030) indicates thatS. komarovi is an outcrossing species. Slightly more than 20% of the genetic variation was found among populations (F ST=0.204). In addition, significant differences in allele frequency were detected between populations at all 11 polymorphic loci (P<0.001). Nei's genetic identities range from 0.885 to 0.985 with a mean of 0.942. However, indirect estimates of the number of migrant per generation (0.97, calculated fromF ST and 0.31, calculated from seven private alleles) indicate that the levels of gene flow is low among Korean populations. Although the species maintains a moderate level of genetic variation within populations, the small, isolated natural populations of the species have been severely destructed by human activities, particularly in summer season. If this is true, conservation efforts should be focused on those populations that currently maintain the most genetic diversity (e.g., populations of Cheju Island and coast of the southwestern Korean Peninsula).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, N.H. andSlatkin, M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity56: 409–415.

    PubMed  Google Scholar 

  • Bayer, R.J., 1988. Patterns of isozyme variation in western north AmericanAntennaria (Asteraceae: Inuleae). I. Sexual species of sect.Dioicae. Syst. Bot.13: 525–57.

    Google Scholar 

  • Chung, M.G., 1994a. Allozyme diversity and population genetic structure inHosta jonesii (Liliaceae). Korean J. Genet.16: 147–156.

    Google Scholar 

  • Chung, M.G. 1994b. Low levels of genetic diversity within populations ofHosta clausa (Liliaceae). Plant Species Biol.9: 177–182.

    Article  Google Scholar 

  • Chung, M.G. 1994c. Genetic structure in Korean populations ofHosta capitata (Liliaceae). J. Plant Biol.37: 277–284.

    CAS  Google Scholar 

  • Chung, M.G. 1994d. Genetic variation and population structure in Korean endemic species: II.Hosta minor (Liliaceae). J. Plant Res.107: 377–383.

    Article  Google Scholar 

  • Chung, M.G. andChung, H.G. 1994. Allozyme diversity and population genetic structure in Korean endemic species: I.Hosta yingeri (Liliaceae). J. Plant Biol.37: 141–149.

    Google Scholar 

  • Chung, M.G., Hamrick, J.L., Jones, S.B. andDerda, G.S. 1991. Isozyme variation within and among populations ofHosta (Liliaceae) in Korea. Syst. Bot.16: 667–684.

    Google Scholar 

  • Chung, M.G. andKang, S.S. 1994. Genetic variation and population structure in Korean populations ofEurya japonica (Theaceae). Amer. J. Bot.81: 1077–1082.

    Google Scholar 

  • Crawford, D.J., 1983. Phylogenetic and systematic inferences from electrophoretic studies.In S.D. Tanksely and T.J. Ortop, eds., Isozymes in Plant Breeding, Part A, Elsevier, Amsterdam, pp. 257–287.

    Google Scholar 

  • Frankel, O.H. andSoulé, M.E. 1981. Conservation and Evolution. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Gottlieb, L.D., 1981. Electrophoretic evidence and plant populations. Prog. Phytochem.71: 1–45.

    Google Scholar 

  • Gottlieb, L.D. 1982. Conservation and duplication of isozymes in plants. Science216: 373–380.

    CAS  Google Scholar 

  • Hamrick, J.L. 1987. Gene flow and distribution of genetic variation in plant populations.In K. Urbanska, ed., Differentiation Patterns in Higher Plants, Academic Press, New York, NY, pp. 53–67.

    Google Scholar 

  • Hamrick, J.L. andGodt, M.J.W. 1989. Allozyme diversity in plant species.In A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds., Plant Population Genetics, Breeding and Genetic Resources, Sinauer, Sunderland, MA, pp. 43–63.

    Google Scholar 

  • Hamrick, J.L., Godt, M.J.W., Murawski, D.A. andLoveless, M.D. 1991. Correlations between species traits and allozyme diversity: Implications for conservation biology.In D.A. Falk and K.E. Holsinger, eds., Genetics and Conservation of Rare Plants, Oxford Univ. Press, New York, NY, pp. 76–86.

    Google Scholar 

  • Hamrick, J.L., Godt, M.J.W. andSherman-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests6: 95–124.

    Article  Google Scholar 

  • Haufler, C.H. 1985. Enzyme variability and modes of evolution inBommeria (Pteridaceae). Syst. Bot.10: 91–104.

    Google Scholar 

  • Inoue, K. andKawahawa, T. 1990. Allozyme differentiation and genetic structure in island and mainland Japanese populations ofCampanula punctata (Campanulaceae). Amer. J. Bot.77: 1440–1448.

    Google Scholar 

  • Jinno, T. 1956. On the relation between the chromosome numbers and the flora growing in the coast of inland sea in Japan. Jap. J. Genet.31: 147–150.

    Google Scholar 

  • Karron, J.D. 1987. A comparison of levels of genetic polymorphism in geographically restricted and widespread plant congeners. Evol. Ecol.1: 47–58.

    Article  Google Scholar 

  • Kitamura, S. andMurata, G. 1987. Colored Illustration of Herbaceous Plants of Japan. Hoikusha Publ. Co., Ltd., Japan. (in Japanese).

    Google Scholar 

  • Li, C.C. andHorvitz, D.G. 1953. Some methods of estimating the inbreeding coefficient. Amer. J. Human Genet.5: 107–117.

    CAS  Google Scholar 

  • Loveless, M.D. andHamrick, J.L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst.15: 65–95.

    Article  Google Scholar 

  • Mitton, J.B., Linhart, Y.B., Sturgeon, K.B. andHamrick, J.L. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Hered.70: 86–89.

    CAS  Google Scholar 

  • Mun, H.T. 1984. On the plant succession of sand bars at the estuary of the Nagdong River. Ph. D. Dissertation, Seoul National University, Seoul, Korea. (in Korean with English summary)

    Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am. Nat.106: 28–292.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA.70: 3321–3323.

    CAS  PubMed  Google Scholar 

  • Nei, M. 1977.F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet.41: 225–233.

    CAS  Google Scholar 

  • Nishikawa, T. 1985. Chromosome counts of flowering plants of Hokkaido (8). J. Hokkaido Univ. Sect. 2B.35: 97–111.

    Google Scholar 

  • Radford, A.E., Ahles, H.E. andBell, C.R. 1983. Manual of the vascular Flora of the Carolinas. Univ. North Carolina Press, Chapel Hill, NC.

    Google Scholar 

  • Richter, T.S., Soltis, P.S. andSoltis, D.E. 1994. Genetic variation within and among populations of the narrow endemic,Delphinium viridescens (Ranunculaceae). Amer. J. Bot.81: 1070–1076.

    Google Scholar 

  • Rohlf, F.J. 1988. Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, Setauket, NY.

    Google Scholar 

  • SAS Institute, Inc. 1982. SAS User's Guide: Statistics SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Schiller, G., Conkle, M.T. andGrumwald, C. 1986. Isozyme variation among native stands and populations of aleppo pine in Israel. Israel J. Bot.35: 161–174.

    Google Scholar 

  • Schonewald-Cox, C.M. 1983. Conclusions: guidelines to management: a beginning attempt.In C.M. Schonewald-Cox, S.M. Chambers, B. MacBride, and W.L. Thomas, eds., Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, Benjamin/Cummings, Menlo Park, CA, pp. 414–445.

    Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution39: 53–65.

    Google Scholar 

  • Soltis, D.E., Haufler, C.H., Darrow, D.C. andGastony, G.J. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, and staining schedules. Amer. Fern J.73: 9–27.

    Google Scholar 

  • Soltis, P.S. andSoltis, D.E. 1991. Genetic variation in endemic and widespread plant species: Examples from Saxifragaceae andPolystichum (Dryopter-Idaceae). Aliso13: 215–223.

    Google Scholar 

  • Soltis, P.S., Soltis, D.E., Tucker, T.L. andLang, F.A. 1992. Allozyme variability is absent in the narrow endemic,Bensoniella oregana (Saxifragaceae). Conser. Biol.6: 131–134.

    Google Scholar 

  • Soulé, M.E. 1986. Conservation Biology: the Science of Scarcity and Diversity. Sinauer, Sunderland, MA.

    Google Scholar 

  • Van Valden, L. 1965. Morphological variation and width of ecological niche. Am. Nat.99: 377–390.

    Google Scholar 

  • Wayne, R.K., Gilbert, D.A., Lehman, N., Hansen, K., Eisenhawer, A., Girman, D., Peterson, R.O., Mech, L.D., Gogan, P.J.P., Seal, U.S. andKumenaker, R.J. 1991. Conservation genetics of the endangered Isle Royle Gray Wolf. Conser. Biol.5: 41–51.

    Google Scholar 

  • Weeden, N.F. andWendel, J.F. 1989. Genetics of plant isozymes.In D.E. Soltis and P.S. Soltis, eds., Isozymes in Plant Biology, Dioscorides Press, Portland, OR, pp. 46–72.

    Google Scholar 

  • Wolff, S.L. andJefferles, R.L. 1987. Morphological and isozyme variation inSalicornia europaea (s.l.) (Chenopodiaceae) in northeastern North America. Can. J. Bot.65: 1410–1419.

    Google Scholar 

  • Workman, P.L. andNiswander, J.D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Amer. J. Human Genet.22: 24–49.

    CAS  Google Scholar 

  • Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat.56: 330–338.

    Article  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics16: 97–159.

    Google Scholar 

  • Wright, S. 1951. The genetic structure of populations. Ann. Eugen.15: 313–354.

    Google Scholar 

  • Wright, S. 1965. The interpretation of population structure byF-statistics with special regard to systems of mating. Evolution19: 395–420.

    Google Scholar 

  • Yahara, T., Kawahara, T., Crawford, D.J., Ito, M. andWatanabe, K. 1989. Extensive gene duplications in diploidEupatorium (Asteraceae). Amer. J. Bot.76: 1247–1253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.T., Chung, M.G. Genetic variation and population structure in Korean populations of sand dune speciesSalsola komarovi (Chenopodiaceae). J. Plant Res. 108, 195–203 (1995). https://doi.org/10.1007/BF02344344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344344

Key words

Navigation