Skip to main content

Advertisement

Log in

Whole-brain radiation fails to boost intracerebral gefitinib concentration in patients with brain metastatic non-small cell lung cancer: a self-controlled, pilot study

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Whole-brain radiation therapy (WBRT) is generally considered as an efficient strategy to improve blood–brain barrier (BBB) permeability by damaging BBB structure and is therefore, used as a promising pretreatment of chemotherapy. However, the impact of radiotherapy on leaky BBB is still controversial for the reason that BBB of metastatic brain tumor lesion had been breached by tumor metastasizing. Herein, we conducted a self-controlled study to evaluate the effect of WBRT on the permeability of BBB in non-small cell lung cancer (NSCLC) patients with brain metastases (BM).

Method

A prospective self-controlled research was performed. Radiation-naive NSCLC patients with BM were enrolled and treated with gefitinib for 2 weeks, and then concurrently combined with WBRT for 2 weeks. Plasma and cerebrospinal fluid (CSF) before and after WBRT were collected on day 15 and 29 after the initiation of gefitinib treatment. The concentrations of gefitinib in these samples were measured by HPLC.

Results

Three patients were enrolled and evaluated. The concentrations of gefitinib in plasma and CSF pre-WBRT were comparable to those of post-WBRT. Consequently, no significant change was noted in the CSF-to-plasma ratios of gefitinib before and after WBRT (2.79 ± 1.47 vs. 2.35 ± 1.74 %, p = 0.123).

Conclusions

The WBRT may not affect the BBB permeability by determining the concentration of gefitinib in NSCLC patients with BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’Yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA, Brain Tumor Epidemiol C (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer Am Cancer Soc 113(7):1953–1968. doi:10.1002/cncr.23741

    Google Scholar 

  2. Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fortin D (2004) The blood-brain barrier should not be underestimated in neuro-oncology. Rev Neurol 160(5):523–532. doi:10.1016/s0035-3787(04)70981-9

    Article  CAS  PubMed  Google Scholar 

  4. Iuchi T, Shingyoji M, Sakaida T, Hatano K, Nagano O, Itakura M, Kageyama H, Yokoi S, Hasegawa Y, Kawasaki K, Iizasa T (2013) Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer 82(2):282–287. doi:10.1016/j.lungcan.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  5. Cataldo VD, Gibbons DL, Perez-Soler R, Quintas-Cardama A (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. New Engl J Med 364(10):947–955. doi:10.1056/NEJMct0807960

    Article  CAS  PubMed  Google Scholar 

  6. Ma SL, Xu YP, Deng QH, Yu XM (2009) Treatment of brain metastasis from non-small cell lung cancer with whole brain radiotherapy and gefitinib in a Chinese population. Lung Cancer 65(2):198–203. doi:10.1016/j.lungcan.2008.10.028

    Article  PubMed  Google Scholar 

  7. Zhao J, Chen M, Zhong W, Zhang L, Li L, Xiao Y, Nie L, Hu P, Wang M (2013) Cerebrospinal fluid concentrations of gefitinib in patients with lung adenocarcinoma. Clin Lung Cancer 14(2):188–193. doi:10.1016/j.cllc.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  8. Togashi Y, Masago K, Masuda S, Mizuno T, Fukudo M, Ikemi Y, Sakamori Y, Nagai H, Kim YH, Katsura T, Mishima M (2012) Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 70(3):399–405. doi:10.1007/s00280-012-1929-4

    Article  CAS  PubMed  Google Scholar 

  9. Qin DX, Ou GF, Mo H, Song YW, Kang GL, Hu YH, Gu XZ (2001) Improved efficacy of chemotherapy for glioblastoma by radiation-induced opening of blood-brain barrier: clinical results. Int J Radiat Oncol 51(4):959–962

    Article  CAS  Google Scholar 

  10. Sandor N, Walter FR, Bocsik A, Santha P, Schilling-Toth B, Lener V, Varga Z, Kahan Z, Deli MA, Safrany G, Hegyesi H (2014) Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice. PloS One 9(11):e112397

    Article  PubMed Central  PubMed  Google Scholar 

  11. van Vulpen M, Kal HB, Taphoorn MJ, El-Sharouni SY (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? (Review). Oncol Rep 9(4):683–688

    PubMed  Google Scholar 

  12. Khatri A, Gaber MW, Brundage RC, Naimark MD, Hanna SK, Stewart CF, Kirstein MN (2011) Effect of radiation on the penetration of irinotecan in rat cerebrospinal fluid. Cancer Chemother Pharmacol 68(3):721–731

    Article  CAS  PubMed  Google Scholar 

  13. Qin D, Ma J, Xiao J, Tang Z (1997) Effect of brain irradiation on blood-CSF barrier permeability of chemotherapeutic agents. Am J Clin Oncol 20(3):263–265

    Article  CAS  PubMed  Google Scholar 

  14. Qin DX, Zheng R, Tang J, Li JX, Hu YH (1990) Influence of radiation on the blood-brain barrier and optimum time of chemotherapy. Int J Radiat Oncol Biol Phys 19(6):1507–1510

    Article  CAS  PubMed  Google Scholar 

  15. Blakeley JO, Olson J, Grossman SA, He X, Weingart J, Supko JG, Approaches New, New Approaches to Brain Tumor Therapy C (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91(1):51–58. doi:10.1007/s11060-008-9678-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fazakas C, Wilhelm I, Nagyoszi P, Farkas AE, Hasko J, Molnar J, Bauer H, Bauer HC, Ayaydin F, Dung NT, Siklos L, Krizbai IA (2011) Transmigration of melanoma cells through the blood-brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PLoS ONE 6(6):e20758. doi:10.1371/journal.pone.0020758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gerstner ER, Fine RL (2007) Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol 25(16):2306–2312. doi:10.1200/jco.2006.10.0677

    Article  PubMed  Google Scholar 

  18. Fang L, Song Y, Weng X, Li F, Xu Y, Lin N (2015) Highly sensitive HPLC-DAD method for the assay of gefitinib in patient plasma and cerebrospinal fluid: application to a blood-brain barrier penetration study. Biomedical chromatogr. doi:10.1002/bmc.3520

    Google Scholar 

  19. Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA (2015) Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 38(3):E9. doi:10.3171/2014.12.FOCUS14758

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sandor N, Walter FR, Bocsik A, Santha P, Schilling-Toth B, Lener V, Varga Z, Kahan Z, Deli MA, Safrany G, Hegyesi H (2014) Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice. PLoS ONE 9(11):e112397. doi:10.1371/journal.pone.0112397

    Article  PubMed Central  PubMed  Google Scholar 

  21. Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161(2):143–152

    Article  CAS  PubMed  Google Scholar 

  22. Fauquette W, Amourette C, Dehouck M-P, Diserbo M (2012) Radiation-induced blood-brain barrier damages: an in vitro study. Brain Res 1433:114–126

    Article  CAS  PubMed  Google Scholar 

  23. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63(18):5950–5956

    CAS  PubMed  Google Scholar 

  24. Wu L, Li X, Janagam DR, Lowe TL (2014) Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm Res 31(3):531–540. doi:10.1007/s11095-013-1196-z

    Article  CAS  PubMed  Google Scholar 

  25. Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126. doi:10.3389/fonc.2014.00126

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fortin D (2012) The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr Cancer Drug Targets 12(3):247–259

    Article  CAS  PubMed  Google Scholar 

  27. Woodburn JR, Barker AJ, Gibson KH, Ashton SE, Wakeling AE, Curry BJ, Scarlett L, Henthorn LR (1997) ZD1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. In: Proceedings of the American association for cancer research annual meeting, vol 38, p 633

  28. Rieger L, Rieger J, Winter S, Streffer J, Esser P, Dichgans J, Meyermann R, Weller M (2000) Evidence for a constitutive, verapamil-sensitive, non-P-glycoprotein multidrug resistance phenotype in malignant glioma that is unaltered by radiochemotherapy in vivo. Acta Neuropathol 99(5):555–562

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka T, Munshi A, Brooks C, Liu J, Hobbs ML, Meyn RE (2008) Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity. Clin Cancer Res 14(4):1266–1273. doi:10.1158/1078-0432.CCR-07-1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72(3):257–266. doi:10.1016/j.radonc.2004.07.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Zhejiang Cancer Hospital Program for the Cultivation of 1022 Talents (Luo Fang), Zhejiang Provincial Program for the Cultivation of High-level Innovative Heath Talents (Nengming Lin), and Zhejiang Provincial Natural Science Foundation (LY15H310003; Nengming Lin).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenglin Ma or Nengming Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Sun, X., Song, Y. et al. Whole-brain radiation fails to boost intracerebral gefitinib concentration in patients with brain metastatic non-small cell lung cancer: a self-controlled, pilot study. Cancer Chemother Pharmacol 76, 873–877 (2015). https://doi.org/10.1007/s00280-015-2847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2847-z

Keywords

Navigation