Skip to main content

Advertisement

Log in

The PPARγ agonist pioglitazone crosses the blood–brain barrier and reduces tumor growth in a human xenograft model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear hormone receptor family, represents a target in glioma therapy due to its antineoplastic effects in vitro on human glioma cell lines. We investigate the antineoplastic effects of the PPARγ agonist pioglitazone (pio) in a human glioma xenograft model to define the minimal required dose to induce antineoplastic effects. Additionally, we assess the ability of pio to cross the blood–brain barrier by measuring brain parenchymal concentration after oral administration.

Methods

Human LN-229 cells were injected into the striatum of Balb/cJHanHsd-Prkdc-scid mice. Tumor volumes, invasion, proliferation and parenchymal pio concentrations were measured in this xenograft model after continuous intracerebral drug administration through an osmotic pump or after oral administration.

Results

Continuous intracerebral or oral administration of pio reduced tumor volumes, invasion, and proliferation in vivo. To achieve a significant antineoplastic effect, pio needed to be dosed at 240 PPM in the oral group and >1 μM when delivered intracerebrally. After oral pio administration, the drug reached >1 nM levels in brain parenchyma.

Conclusions

These data indicate that pioglitazone crosses the blood–brain barrier and has antineoplastic effects in this glioma xenograft model and may be of potential use in treatment of malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berge K, Tronstad KJ, Flindt EN, Rasmussen TH, Madsen L, Kristiansen K, Berge RK (2001) Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. Carcinogenesis 22:1747–1755

    Article  PubMed  CAS  Google Scholar 

  2. Brown DC, Gatter KC (2002) Ki67 protein: the immaculate deception? Histopathology 40:2–11

    Article  PubMed  CAS  Google Scholar 

  3. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  PubMed  CAS  Google Scholar 

  4. Grommes C, Conway DS, Alshekhlee A, Barnholtz-Sloan JS (2010) Inverse association of PPARgamma agonists use and high grade glioma development. J Neurooncol 100(2):233–239

    Article  PubMed  CAS  Google Scholar 

  5. Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429

    Article  PubMed  CAS  Google Scholar 

  6. Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schlegel U, Heneka MT (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533

    Article  PubMed  CAS  Google Scholar 

  7. Grommes C, Landreth GE, Schlegel U, Heneka MT (2005) The nonthiazolidinedione tyrosine-based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharmacol Exp Ther 313:806–813

    Article  PubMed  CAS  Google Scholar 

  8. Kato M, Nagaya T, Fujieda M, Saito K, Yoshida J, Seo H (2002) Expression of PPARgamma and its ligand-dependent growth inhibition in human brain tumor cell lines. Jpn J Cancer Res 93:660–666

    Article  PubMed  CAS  Google Scholar 

  9. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225 Discussion 226–229

    PubMed  Google Scholar 

  10. Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    Article  PubMed  CAS  Google Scholar 

  11. Lin ZJ, Ji W, Desai-Krieger D, Shum L (2003) Simultaneous determination of pioglitazone and its two active metabolites in human plasma by LC-MS/MS. J Pharm Biomed Anal 33:101–108

    Article  PubMed  CAS  Google Scholar 

  12. Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S (1997) Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 47:29–35

    PubMed  CAS  Google Scholar 

  13. Nieder C, Grosu AL, Astner S, Molls M (2005) Treatment of unresectable glioblastoma multiforme. Anticancer Res 25:4605–4610

    PubMed  CAS  Google Scholar 

  14. Papi A, Tatenhorst L, Terwel D, Hermes M, Kummer MP, Orlandi M, Heneka MT (2009) PPARgamma and RXRgamma ligands act synergistically as potent antineoplastic agents in vitro and in vivo glioma models. J Neurochem 109:1779–1790

    Article  PubMed  CAS  Google Scholar 

  15. Parkins CS, Darling JL, Gill SS, Revesz T, Thomas DG (1991) Cell proliferation in serial biopsies through human malignant brain tumours: measurement using Ki67 antibody labelling. Br J Neurosurg 5:289–298

    Article  PubMed  CAS  Google Scholar 

  16. Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265

    Article  PubMed  CAS  Google Scholar 

  17. Sakamoto J, Kimura H, Moriyama S, Odaka H, Momose Y, Sugiyama Y, Sawada H (2000) Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 278:704–711

    Article  PubMed  CAS  Google Scholar 

  18. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  19. Torp SH (2002) Diagnostic and prognostic role of Ki67 immunostaining in human astrocytomas using four different antibodies. Clin Neuropathol 21:252–257

    PubMed  CAS  Google Scholar 

  20. Wan Z, Shi W, Shao B, Shi J, Shen A, Ma Y, Chen J, Lan Q (2011) Peroxisome proliferator-activated receptor gamma agonist pioglitazone inhibits beta-catenin-mediated glioma cell growth and invasion. Mol Cell Biochem 349:1–10

    Article  PubMed  CAS  Google Scholar 

  21. Wilson S, Bergsma D (2000) Orphan G-protein coupled receptors: novel drug targets for the pharmaceutical industry. Drug Des Discov 17:105–114

    PubMed  CAS  Google Scholar 

  22. Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, Landreth G, Koenigsknecht J, Heneka MT (2002) Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 81:1052–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by an ABTC2 research grant to GEL. Gary E. Landreth has received financial support for research projects on antiinflammatory actions of PPARγ agonists by GlaxoSmithKline. Case Western Reserve University holds a US patent on the use of PPARγ agonists in inflammatory indications in the nervous system. The intellectual property and research support do not relate to the antineoplastic actions of the drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grommes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grommes, C., Karlo, J.C., Caprariello, A. et al. The PPARγ agonist pioglitazone crosses the blood–brain barrier and reduces tumor growth in a human xenograft model. Cancer Chemother Pharmacol 71, 929–936 (2013). https://doi.org/10.1007/s00280-013-2084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2084-2

Keywords

Navigation