Skip to main content

Advertisement

Log in

The Optional VenaTech Convertible Vena Cava Filter: Experimental Study in Sheep

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Retrieval of optional caval filters may be impaired by filter tilting, migration, fracture, or embedding in the IVC wall. The goal of this experimental study was to evaluate a new optional filter, convertible by unlocking and removing the filter head.

Methods

Forty-nine Pre-Alp sheep (average weight, 55 kg) were anesthetized. IVC was catheterized via the right femoral vein (n = 46) or via the internal jugular vein (n = 3) with a 12.9-F sheath. VenaTech Convertible IVC filters were inserted as either permanent filters (n = 14) or as filters to be converted. Conversion was immediately after deployment (n = 19) or delayed after 1, 3, or 6 months (n = 20). Filter delivery, deployment, and conversion with measurement of migration and tilting were evaluated by cavography. Incorporation of the filter’s stabilizers and arms in the IVC wall was assessed by gross anatomy.

Results

Delivery system insertion, filter release, and immediate conversion were successful in all cases. Delayed conversion was completed in all but one sheep, due to insufficient snare tension. Complimentary balloon-catheter inflation was required in 12 of 20 delayed conversions to achieve filter opening. In all 49 sheep, no thrombosis, migration, or significant tilting occurred. Within 4 weeks of conversion, the filter’s stabilizers and arms were incorporated into the IVC wall. Upon removal, the filter head was free of intimal growth.

Conclusions

The VenaTech Convertible optional IVC filter was successfully implanted in all sheep with no migration or tilting. Conversion at various dates by filter head removal was feasible in all but one case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stein PD, Matta F (2010) Acute pulmonary embolism. Curr Probl Cardiol 35:314–376

    Article  PubMed  Google Scholar 

  2. Hoffmann B, Gross CR, Jöckel KH et al (2010) Trends in mortality of pulmonary embolism—an international comparison. Thromb Res 125:303–308

    Article  PubMed  CAS  Google Scholar 

  3. Kaufman JA, Kinney TB, Streiff MB et al (2006) Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference. J Vasc Interv Radiol 17:449–459

    Article  PubMed  Google Scholar 

  4. Decousus H, Barral FG, Buchmuller-Cordier A et al. for the PREPIC Study Group (2005) Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism. The PREPIC (Prévention du Risque d’Embolie Pulmonaire par Interruption Cave) randomized study. Circulation 112:416–422

    Google Scholar 

  5. Bowen FH, Anderson HM, Starbuck RW (1947) Ligation of the inferior vena cava for the prevention of pulmonary embolism; report of a case. J Fla Med Assoc 33:443–446

    PubMed  CAS  Google Scholar 

  6. Spencer FC, Quattlebaum JK, Quattlebaum JK Jr et al (1962) Plication of the inferior vena cava for pulmonary embolism: a report of 20 cases. Ann Surg 155:827–837

    PubMed  CAS  Google Scholar 

  7. Adams JT, Deweese JA (1965) Experimental and clinical evaluation of partial vein interruption in the prevention of pulmonary emboli. Surgery 57:82–102

    PubMed  CAS  Google Scholar 

  8. Mobin-Uddin K, Smith PE, Martinez LO et al (1967) A vena caval filter for the prevention of pulmonary embolus. Surg Forum 18:209–211

    Google Scholar 

  9. Burke PE, Michna BA, Harvey CF et al (1987) Experimental comparison of percutaneous vena caval devices: titanium Greenfield filter versus bird’s nest filter. J Vasc Surg 6:66–70

    Article  PubMed  CAS  Google Scholar 

  10. Neuerburg J, Gunther RW, Rassmussen E et al (1993) A new retrievable percutaneous vena cava filter: experimental in vitro and in vivo evaluation. Cardiovasc Interv Radiol 16:224–229

    Article  CAS  Google Scholar 

  11. Onat L, Ganiyusufoglu AK, Mutlu A et al (2009) OptEase and TrapEase vena cava filters: a single-center experience in 258 patients. Cardiovasc Interv Radiol 32:992–997

    Article  Google Scholar 

  12. Le Blanche AF, Benazzouz A, Reynaud P et al. for the European VenaTechLP Vena Cava Filter Study Group (2008) The VenaTech LP permanent caval filter: effectiveness and safety in the prevention of pulmonary embolism—a European multicenter study. J Vasc Interv Radiol 19:509–515

    Google Scholar 

  13. Bovyn G, Ricco JB, Reynaud P et al. for the European Tempofilter II Study Group (2006) Long-duration temporary vena cava filter: a prospective 104-case multicenter study. J Vasc Surg 43:1222–1229

    Google Scholar 

  14. Mismetti P, Rivron-Guillot K, Quenet S et al (2007) A prospective long-term study of 220 patients with a retrievable vena cava filter for secondary prevention of venous thromboembolism. Chest 131:223–229

    Article  PubMed  Google Scholar 

  15. Oliva VL, Szatmari F, Giroux MF et al (2005) The Jonas study: evaluation of the retrievability of the Cordis OptEase inferior vena cava filter. J Vasc Interv Radiol 16:1439–1445

    Article  PubMed  Google Scholar 

  16. Oliva VL, Perreault P, Giroux MF et al (2008) Recovery G2 inferior vena cava filter: technical success and safety of retrieval. J Vasc Interv Radiol 19:884–889

    Article  PubMed  Google Scholar 

  17. Binkert CA, Drooz AT, Caridi JG et al (2009) Technical success and safety of retrieval of the G2 filter in a prospective, multicenter study. J Vasc Interv Radiol 20:1449–1453

    Article  PubMed  Google Scholar 

  18. Terhaar OA, Lyon SM, Given MF et al (2004) Extended interval for retrieval of Günther Tulip filters. J Vasc Interv Radiol 15:1257–1262

    Article  PubMed  Google Scholar 

  19. Lyon SM, Riojas GE, Uberoi R et al (2009) Short- and long-term retrievability of the Celect vena cava filter: results from a multi-institutional registry. J Vasc Interv Radiol 20:1441–1448

    Article  PubMed  Google Scholar 

  20. Cantwell CP, Pennypacker J, Singh H et al (2009) Comparison of the recovery and G2 filter as retrievable inferior vena cava filters. J Vasc Interv Radiol 20:1193–1199

    Article  PubMed  Google Scholar 

  21. Stavropoulos SW, Dixon RG, Burke CT et al (2008) Embedded inferior vena cava filter removal: use of endobronchial forceps. J Vasc Interv Radiol 19:1297–1301

    Article  PubMed  Google Scholar 

  22. Van Ha TG, Vinokur O, Lorenz J et al (2009) Techniques used for difficult retrievals of the Günther Tulip inferior vena cava filter: experience in 32 patients. J Vasc Interv Radiol 20:92–99

    Article  PubMed  Google Scholar 

  23. Lynch FC (2009) Balloon-assisted removal of tilted inferior vena cava filters with embedded tips. J Vasc Interv Radiol 20:1204–1210

    Google Scholar 

  24. Ray CE, Mitchell E, Zipser S et al (2006) Outcomes with retrievable inferior vena cava filters: a multicenter study. J Vasc Interv Radiol 17:1595–1604

    Article  PubMed  Google Scholar 

  25. Schwindaman D (1994) Federal regulation of experimental animal use in the United States of America. Rev Sci Technol 13:247–260

    CAS  Google Scholar 

  26. EEC No. 86/609 (1986) Off J Eur Communities 358:1–28

    Google Scholar 

  27. Lunderquist A, Ivancev K, Wallace S et al (1995) The acquisition of skills in interventional radiology by supervised training on animal models: a three-year multicenter experience. Cardiovasc Interv Radiol 18:209–211

    Article  CAS  Google Scholar 

  28. Hoppe H, Nutting DO, Smouse R et al (2006) Günther Tulip filter retrievability multicenter study including CT follow-up: final report. J Vasc Interv Radiol 17:1017–1023

    Article  PubMed  Google Scholar 

  29. Iliescu B, Haskal ZJ (2011) Advanced techniques for removal of retrievable inferior vena cava filters. Cardiovasc Interv Radiol Jun 15. doi:10.1007/s00270-011-0205-z

  30. Durack JC, Westphalen AC, Kekulawela S et al (2011) Perforation of the IVC: rule rather than exception after longer indwelling times for the Günther Tulip and Celect retrievable filters. Cardiovasc Interv Radiol Mar 30. doi:10.1007/s00270-011-0151-9

Download references

Acknowledgments

Support for this work was provided by funds from B. Braun Medical, France.

Conflict of interest

Alain F. Le Blanche, Jean-Baptiste Ricco, Michel Bonneau, and Philippe Reynaud have a consulting agreement with B. Braun Medical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain F. Le Blanche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Blanche, A.F., Ricco, JB., Bonneau, M. et al. The Optional VenaTech Convertible Vena Cava Filter: Experimental Study in Sheep. Cardiovasc Intervent Radiol 35, 1181–1187 (2012). https://doi.org/10.1007/s00270-011-0273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0273-0

Keywords

Navigation