Skip to main content

Advertisement

Log in

Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002–2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Anderson J. R., E. E. Hardy, J. T. Roach, R. E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964

  • Arzet K., D. Krause-Dellin, C. Steinberg. 1986a. Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains and sediment chemistry. In: J.P. Smol, R.W. Battarbee, R.B. Davis, J. Meriläinen (eds). Diatoms and lake acidity, Dr. W. Junk Publishers, Dordrecht, The Netherlands, pp 227–250

    Google Scholar 

  • Arzet K., C. Steinberg, R. Psenner, N. Schulz. 1986b. Diatom distribution and diatom inferred pH in the sediment of four alpine lakes. Hydrobiologia 143:247–254

    Article  CAS  Google Scholar 

  • Barbour M. T., J. Gerritsen, B. D. Snyder, J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C

  • Battarbee R. W., D. F. Charles. 1986. Diatom-based pH reconstruction studies of acid lakes in Europe and North America: a synthesis. Water, Air and Soil Pollution 30:347–354

    Article  CAS  Google Scholar 

  • Battarbee R. W., D. F. Charles, S. S. Dixit, I. Renberg. 1999. Diatoms as indicators of surface water acidity. In: E. F. Stoermer, J. P. Smol (eds). The diatoms: applications for the environmental sciences. Cambridge University Press, Cambridge, UK, pp 85–127

    Google Scholar 

  • Camburn K. E., D. F. Charles. 2000. Diatoms of low-alkalinity lakes in the northeastern United States. The Academy of Natural Sciences of Philadelphia, Philadelphia, Pennsylvania

    Google Scholar 

  • Carpenter K. D., I. R. Waite. 2000. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon. Environ Monit Assess 64:247–257

    Article  CAS  Google Scholar 

  • Charles D. F. 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66:994–1011

    Article  Google Scholar 

  • Charles D. F., J. P. Smol. 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnol Oceanogr 33:1451–1462

    Article  CAS  Google Scholar 

  • Chessman B., I. Growns, J. Currey, N. Plunkett-Cole. 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Bio 41:317–331

    Article  Google Scholar 

  • Cuffney T. F., M. R. Meador, S. D. Porter, M. F. Gurtz. 1997. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River Basin, Washington, 1990, U. S. Geological Survey Water Resources Investigations Report 96–4280, Raleigh, North Carolina

  • Denys L. 2004. Relation of abundance-weighted averages of diatom indicator values to measure environmental conditions in standing freshwaters. Ecol Indicators 4:255–275

    Article  CAS  Google Scholar 

  • Dixit S. S. 1986. Diatom-inferred pH calibration of lakes near Wawa, Ontario. Can J Botany 64:1129–1133

    Article  Google Scholar 

  • Dixit S. S., A. S. Dixit, R. D. Evans. 1988. Sedimentary diatom assemblages and their utility in computing diatom-inferred pH in Sudbury Ontario lakes. Hydrobiologia 169:135–148

    CAS  Google Scholar 

  • Dixit A. S., S. S. Dixit, J. P. Smol. 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Can J Fisheries Aquatic Sci 49:17–24

    Article  CAS  Google Scholar 

  • Dow C. L., R. A. Zampella. 2000. Specific conductance and pH as indicators of watershed disturbance in streams of the New Jersey Pinelands, USA. Environ Manage 26:437–445

    Article  Google Scholar 

  • Dufrêne M., P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Article  Google Scholar 

  • Eck P. 1990. The American cranberry. Rutgers University Press, New Brunswick, New Jersey

    Google Scholar 

  • Ford J. 1986. The recent history of a naturally acidic lake (Cone Pond, N.H.). In: J. P. Smol, R. W. Battarbee, R. B. Davis, J. Meriläinen (eds). Diatoms and lake acidity. Dr. W. Junk Publishers, Dordrecht, The Netherlands, pp 131–148

    Google Scholar 

  • Fore L. S. 2003. Response of diatom assemblages to human disturbance: development and testing of a multimetric index for the mid-Atlantic region (USA). In: T. P. Simon (ed), Biological response signatures: indicator patterns using aquatic communities. CRC Press, Roca Raton, Florida, pp 445–480

    Google Scholar 

  • Fore L. S., C. Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biol 47:2015–2037

    Article  Google Scholar 

  • Hill M. O. 1979a. DECORANA—a FORTRAN Program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, New York

    Google Scholar 

  • Hill M. O. 1979b. TWINSPAN—a FORTRAN Program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Cornell University, Ithaca, New York

    Google Scholar 

  • Hill M. O., H. G. Gauch Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hill B. H., R. J. Stevenson, Y. Pan, A. T. Herlihy, P. R. Kaufmann, C. B. Johnson. 2001. Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species level. J North Am Benthol Soc 20:299–310

    Article  Google Scholar 

  • Hill B. H., A. T. Herlihy, P. R. Kaufmann, S. J. DeCelles, M. A. Vander Borgh. 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecol Indicators 2:325–338

    Article  CAS  Google Scholar 

  • Holmes R. W., M. C. Whiting, J. L. Stoddard. 1989. Changes in diatom-inferred pH and acid neutralizing capacity in a dilute, high elevation, Sierra Nevada lake since a.d. 1825. Freshwater Biol 21:295–310

    Article  Google Scholar 

  • Howes B. L., J. M. Teal. 1995. Nutrient balance of a Massachusetts cranberry bog and relationships to coastal eutrophication. Environ Sci Technology 29:960–974

    CAS  Google Scholar 

  • Hustedt F. 1930. Bacillariophyta (Diatomeae). In: A. Pascner (ed). Die Süßwasser-Flora Mitteleuropas. Verlag von Gustav Fischer, Jena, Germany, pp 1–466

    Google Scholar 

  • Kelly M. G., C. J. Penny, B. A. Whitton. 1995. Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302:179–188

    CAS  Google Scholar 

  • Krammer K., H. Lange-Bertalot. 1986. Bacillariophyceae. a. Teil: Naviculaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–876

    Google Scholar 

  • Krammer K., H. Lange-Bertalot. 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–596

    Google Scholar 

  • Krammer K., H. Lange-Bertalot. 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–576

    Google Scholar 

  • Krammer K., H. Lange-Bertalot. 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: H. Ettl, G. Gärtner, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–437

    Google Scholar 

  • Kutka F. J., C. Richards. 1996. Relating diatom assemblage structure to stream habitat quality. J North American Benthol Soc 15:469–480

    Article  Google Scholar 

  • Leland H. V. 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other factors. Can J Fisheries Aquat Sci 52:1108–1129

    Google Scholar 

  • Leland H. V., S. D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biol 44:279–301

    Article  Google Scholar 

  • Lowe R. L. 1974. Environmental requirements and pollution tolerance of freshwater diatoms. EPA-670/4-74-005. U. S. Environmental Protection Agency, Cincinnati, Ohio

  • McCune B., M. J. Mefford. 1999. PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • McCune B., J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • Meriläinen J. 1967. The diatom flora and hydrogen-ion concentration of the water. Ann Botan Fenn 4:51–58

    Google Scholar 

  • Morgan M. D. 1985. Photosynthetically elevated pH in acid waters with high nutrient content and its significance for the zooplankton community. Hydrobiologia 128:239–247

    Article  CAS  Google Scholar 

  • Morgan M. D. 1987. Impact of nutrient enrichment and alkalinization on periphyton communities in the New Jersey Pine Barrens. Hydrobiologia 144:233–241

    Article  CAS  Google Scholar 

  • Morgan M. D., R. E. Good. 1988. Stream chemistry in the New Jersey Pinelands: the influence of precipitation and watershed disturbance. Water Res Res 24:1091–1100

    CAS  Google Scholar 

  • Morgan M. D., K. R. Philipp 1986. Biological Conservation. The effect of agricultural and residential development on aquatic macrophytes in the New Jersey Pine Barrens. Biol Conserv 35:143–158

    Article  Google Scholar 

  • Moul E. T., H. F. Buell. 1979. Algae of the Pine Barrens. In: R. T. T. Forman (ed), Pine Barrens ecosystem and landscape. Academic Press, New York, pp 425–440

    Google Scholar 

  • Ohl L. E., R. A. Gont, E. D. Dibble. 1990. Diatom response to liming of a temperate, brown water lake. Can J Botany 68:347–353

    Google Scholar 

  • Pan Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy, G. B. Collins. 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. J North Am Benthol Soc 15:481–495

    Article  Google Scholar 

  • Pan Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann, A. T. Herlihy. 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. J Phycol 35:460–468

    Article  Google Scholar 

  • Patrick R., C. W. Reimer. 1966. The diatoms of the United States. Vol. 1. Monograph 13. Academy of Natural Sciences of Philadelphia, Philadelphia, Pennsylvania, pp 1–688

    Google Scholar 

  • Patrick R., C. W. Reimer. 1975. The diatoms of the United States. Vol. 2. Part 1. Monograph 13. Academy of Natural Sciences of Philadelphia. Philadelphia, Pennsylvania, pp 1–213

    Google Scholar 

  • Patrick R., B. Matson, L. Anderson. 1979. Streams and lakes in the Pine Barrens. In: R. T. T. Forman (ed), Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 169–193

    Google Scholar 

  • Patrick R. 1996. Rivers of the United States of America. Volume III: The eastern and southeastern states. John Wiley and Sons, New York

    Google Scholar 

  • Rhodehamel E. C. 1979a. Geology of the Pine Barrens of New Jersey. In: R. T. T. Forman (ed). Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 39–60

    Google Scholar 

  • Rhodehamel E. C. 1979b. Hydrology of the New Jersey Pine Barrens. In: R. T. T. Forman (ed). Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 147–167

    Google Scholar 

  • Rice W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rice W. R. 1990. A consensus combined p-value test and family-wide significance of component tests. Biometrics 46:303–308

    Article  Google Scholar 

  • Simola H. 1986. Diatom responses to acidification and lime treatment in a clear-water lake: comparison of two methods of analysis of a diatom stratigraphy. In: J. P. Smol, R. W. Battarbee, R. B. Davis, J. Meriläinen (eds). Diatoms and lake acidity, Dr. W. Junk Publishers, Dordrecht, The Netherland, pp 221–226

    Google Scholar 

  • Stevenson R. J., Y. Pan. 1999. Assessing environmental conditions in rivers and streams with diatoms. In: E. F. Stoemer, J. P. Smol (eds). The diatoms: applications for the environmental sciences. Cambridge University Press, Cambridge, UK, pp 11–40

    Google Scholar 

  • U. S. Department of Agriculture. 2003. 2002 Cranberry statistics. New Jersey Statistics Service, U.S. Department of Agriculture, Trenton, New Jersey

    Google Scholar 

  • van Dam H., A. Mertens, J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J Aquat Ecol 28:117–133

    Article  Google Scholar 

  • Winkler M. G. 1988. Paleolimnology of a Cape Cod kettle pond: diatoms and reconstructed pH. Ecol Monogr 58:197–214

    Article  Google Scholar 

  • Zampella R. A. 1994. Characterization of surface water quality along a watershed disturbance gradient. Water Resources Bull 30:605–611

    CAS  Google Scholar 

  • Zampella R. A., J. F. Bunnell. 1998. Use of reference-site fish assemblages to assess aquatic degradation in Pinelands streams. Ecol Applic 8:645–658

    Article  Google Scholar 

  • Zampella R. A., J. F. Bunnell. 2000. The distribution of anurans in two river systems of a Coastal Plain watershed. J Herpetol 34:210–221

    Article  Google Scholar 

  • Zampella R. A., K. J. Laidig. 1997. Effect of watershed disturbance on Pinelands stream vegetation. J Torrey Botanical Soc 124:52–66

    Article  Google Scholar 

  • Zampella R. A., J. F. Bunnell, K. J. Laidig, L. Dow. 2001. The Mullica River Basin: a report to the Pinelands Commission on the status of the landscape and selected aquatic and wetland resources. Pinelands Commission, New Lisbon, New Jersey

    Google Scholar 

  • Zampella R. A., J. F. Bunnell, K. J. Laidig, N. A. Procopio. 2003. The Rancocas Creek Basin: a report to the Pinelands Commission on the status of selected aquatic and wetland resources. Pinelands Commission, New Lisbon, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Nicholas Procopio, Christina Burns, Jason Shvanda, and Jim Rutherford for collecting water quality, stage, and discharge data and assisting with diatom sample collections. The helpful comments provided by several reviewers are also appreciated. The New Jersey Division of Parks and Forestry authorized the state-lands research permits. Joseph Darlington granted permission to access Pole Bridge Branch on his property. Funding for this study was provided by the U. S. Environmental Protection Agency (State Wetlands Grant Program, Grant No. CD-99298001−1) and the Pinelands Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Zampella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampella, R.A., Laidig, K.J. & Lowe, R.L. Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams. Environmental Management 39, 369–384 (2007). https://doi.org/10.1007/s00267-006-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-006-0041-0

Keywords

Navigation