Skip to main content
Log in

Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis)

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

There is substantial comparative and growing experimental evidence that the competition for fertilization among sperm from different males can drive variation in male reproductive investments. However, less is known about the extent of natural variation in these investments relative to environmental variables affecting resource availability and mating system dynamics, which would allow insights into the mechanisms shaping reproductive allocation. Here, we studied interpopulation variation in male investments in testis size and sperm length across 25 populations of the Asian grass frog Fejervarya limnocharis along a 1550-km latitudinal and 1403-m altitudinal transect in China. We found relative testis mass and sperm length, male somatic condition, and the male/female sex ratio to increase with elevation but not latitude or longitude. Our results suggest that environmental variation may underlie local adaptations to reproductive investments among natural populations, mediated by differences in the availability of both resources and sexual partners (including the resulting male–male competition). These findings contrast with previous predictions that increasing latitude and/or elevation should lead to declining reproductive investments in male anurans due to shortening breeding seasons, declining resource availability, and lowering (rather than increasing) male/female sex ratios. We discuss these species differences in the context of differential resource allocation strategies, breeding ecology, and patterns of male–male competition. These differences show the need for future work on reproductive investments in anurans beyond the few model systems and for potential extension of the theoretical framework to species with different mating systems and strategies.

Significance statement

Despite a broad theoretical framework of how environmental parameters can shape mating systems and these, in turn, drive the evolution of reproductive traits, there is limited empirical evidence from natural populations. We examined differences in the size of testes and sperm between males between natural populations along latitudinal and altitudinal transects. We found that at high elevation, males were relatively heavier and had longer sperm and disproportionately large testes, and the sex ratio was more male-biased. These interpopulation differences may reflect local adaptations to variation in the resource availability and temporal patterns of female availability, which affects the breeding synchrony, sperm demand, and male–male competition for mates and paternity. However, our results differ from previous studies of frogs, possibly due to different breeding ecology, which highlights the need for further work and potential extension of theoretical predictions to non-model anurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriaenssens B, van Damme R, Seebacher F, Wilson RS (2012) Sex cells in changing environments: can organisms adjust the physiological function of gametes to different temperatures? Glob Chang Biol 18:1797–1803

    Article  Google Scholar 

  • Alavi SMH, Cosson J (2005) Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biol Int 29:101–110

    Article  PubMed  Google Scholar 

  • Álvarez D, Viesca L, Nicieza AG (2014) Sperm competitiveness differs between two frog populations with different breeding systems. J Zool 292:202–205

    Article  Google Scholar 

  • Arendt JD (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149–177

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud 1:595–708

    Google Scholar 

  • Berry PY (1964) The breeding patterns of seven species of Singapore Anura. J Anim Ecol 33:227–243

    Article  Google Scholar 

  • Berven KA, Gill DE (1983) Interpreting geographic variation in life-history traits. Am Zool 23:85–97

    Article  Google Scholar 

  • Billard R, Christen R, Cosson MP, Gatty JL, Letellier L, Renard P, Saad A (1986) Biology of the gametes of some teleost species. Fish Physiol Biochem 2:115–120

    Article  CAS  PubMed  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  CAS  PubMed  Google Scholar 

  • Blanckenhorn WU, Fairbairn DJ (1995) Life-history adaptation along a latitudinal cline in the water strider Aquarius remigis (Heteroptera, Gerridae). J Evol Biol 8:21–41

    Article  Google Scholar 

  • Blanckenhorn WU, Hellriegel B (2002) Against Bergmann’s rule: fly sperm size increases with temperature. Ecol Lett 5:7–10

    Article  Google Scholar 

  • Bonnet X, Bradshaw D, Shine R (1998) Capital versus income breeding: an ectothermic perspective. Oikos 83:333–342

    Article  Google Scholar 

  • Breckels RD, Neff BD (2013) The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J Exp Biol 216:2658–2664

    Article  PubMed  Google Scholar 

  • Briskie JV (1992) Copulation patterns and sperm competition in the polygynandrous Smith’s longspur. Auk 109:563–575

    Google Scholar 

  • Briskie JV, Montgomerie R, Birkhead TR (1997) The evolution of sperm size in birds. Evolution 51:937–945

    Article  Google Scholar 

  • Burness G, Schulte-Hostedde AI, Montgomerie R (2008) Body condition influences sperm energetics in lake whitefish (Coregonus clupeaformis). Can J Fish Aquat Sci 65:615–620

    Article  Google Scholar 

  • Buzatto BA, Roberts JD, Simmons LW (2015) Sperm competition and the evolution of precopulatory weapons: increasing male density promotes sperm competition and reduces selection on arm strength in a chorusing frog. Evolution 69:2613–624

    Article  PubMed  Google Scholar 

  • Byrne PG, Roberts JD, Simmons LW (2002) Sperm competition selects for increased testes mass in Australian frogs. J Evol Biol 15:347–355

    Article  Google Scholar 

  • Byrne PG, Simmons LW, Roberts JD (2003) Sperm competition and the evolution of gamete morphology in frogs. Proc R Soc Lond B 270:2079–2086

    Article  Google Scholar 

  • Chen W, Zhao L, Wang Y, Li H, He D, Ren L, Tang Z, Liu X (2013) Reproductive output of the brown frog Rana kukunoris at high altitude of the Tibetan plateau. Acta Herpetol 8:153–157

    Google Scholar 

  • Chen W, Pike DA, He D, Wang Y, Ren L, Wang X, Fan X, Lu X (2014) Altitude decreases testis weight of a frog (Rana kukunoris) on the Tibetan plateau. Herpetol J 24:183–188

    Google Scholar 

  • Cramer ERA, Laskemoen T, Kleven O, Lifjeld JT (2013) Sperm length variation in house wrens Troglodytes aedon. J Ornithol 154:129–138

    Article  Google Scholar 

  • Delgado MJ, Gutiérrez P, Alonso-Bedate M (1989) Seasonal cycles in testicular activity in the frog, Rana perezi. Gen Comp Endocrinol 73:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dewsbury DA (1982) Ejaculate cost and male choice. Am Nat 119:601–610

    Article  Google Scholar 

  • Dziminski MA, Roberts JD, Beveridge M, Simmons LW (2010) Among-population covariation between sperm competition and ejaculate expenditure in frogs. Behav Ecol 21:322–328

    Article  Google Scholar 

  • Emerson SB (1997) Testis size variation in frogs: testing the alternatives. Behav Ecol Sociobiol 41:227–235

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and evolution of mating systems. Science 197:215–223

    Article  CAS  PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Fei L, Ye CY (2001) The colour handbook of the amphibians of Sichuan. China Forestry Publishing House, Chengdu

    Google Scholar 

  • Fitzpatrick JL, Lüpold S (2014) Sexual selection and the evolution of sperm quality. Mol Hum Reprod 20:1180–1189

    Article  PubMed  Google Scholar 

  • Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S (2009) Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci U S A 106:1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomendio M, Roldan ERS (2008) Implications of diversity in sperm size and function for sperm competition and fertility. Int J Dev Biol 52:439–447

    Article  PubMed  Google Scholar 

  • Gould SJ, Johnston RF (1972) Geographic variation. Annu Rev Ecol Syst 3:457–498

    Article  Google Scholar 

  • Hettyey A, Roberts JD (2006) Sperm traits of the quacking frog, Crinia georgiana: intra- and interpopulation variation in a species with a high risk of sperm competition. Behav Ecol Sociobiol 59:389–396

    Article  Google Scholar 

  • Hettyey A, Roberts JD (2007) Sperm traits in the quacking frog (Crinia georgiana), a species with plastic alternative mating tactics. Behav Ecol Sociobiol 61:1303–1310

    Article  Google Scholar 

  • Hettyey A, Laurila A, Herczeg G, Jönsson KI, Kovács T, Merilä J (2005) Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Naturwissenschaften 92:188–192

    Article  CAS  PubMed  Google Scholar 

  • Hosken DJ, Garner TWJ, Blanckenhorn WU (2003) Asymmetry, testis and sperm size in yellow dung flies. Funct Ecol 17:231–236

    Article  Google Scholar 

  • Hunter FM, Birkhead TR (2002) Sperm viability and sperm competition in insects. Curr Biol 12:121–123

    Article  CAS  PubMed  Google Scholar 

  • Immler S, Pitnick S, Parker GA, Durrant KL, Lüpold S, Calhim S, Birkhead TR (2011) Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci U S A 108:5325–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James FC (1970) Geographic variation in birds and its relationship to climate. Ecology 51:365–390

    Article  Google Scholar 

  • Katz DF, Drobnis EZ (1990) Analysis and interpretation of the forces generated by spermatozoa. In: Bavister BD, Cummis J, Roldan ERS (eds) Fertilization in mammals. Serano Symposium, Norwell, Massachusetts, pp 125–137

    Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1998) Applied regression analysis and other multivariable methods. Duxbury Press, Pacific Grove

    Google Scholar 

  • Kusano T, Toda M, Fukuyama K (1991) Testes size and breeding systems in Japanese anurans with special reference to large testes in the treefrog, Rhacophorus arboreus (Amphibia: Rhacophoridae). Behav Ecol Sociobiol 29:27–31

    Article  Google Scholar 

  • Kvarnemo C, Ahnesjö I (1996) The dynamics of operational sex ratios and competition for mates. Trends Ecol Evol 11:404–408

    Article  CAS  PubMed  Google Scholar 

  • Laskemoen T, Albrecht T, Bonisoli-Alquati A et al (2013) Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behav Ecol Sociobiol 67:301–309

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Levitan DR (1993) The importance of sperm limitation to the evolution of egg size in marine invertebrates. Am Nat 141:517–536

    Article  CAS  PubMed  Google Scholar 

  • Liao WB, Lu X (2011) A comparison of reproductive output of the Omei treefrog (Rhacophorus omeimontis) between high and low elevations. Anim Biol 61:263–276

    Article  Google Scholar 

  • Liao WB, Lu X, Shen YW, Hu JC (2011) Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes. Ital J Zool 78:215–221

    Article  Google Scholar 

  • Liao WB, Mi ZP, Li CL, Wei SC, Wu H (2013) Sperm traits in relation to male amplexus position in the Omei treefrog Rhacophorus omeimontis, a species with group spawning. Herpetol J 23:17–21

    Google Scholar 

  • Liao WB, Lu X, Jehle R (2014) Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew’s toad. J Zool 293:84–91

    Article  Google Scholar 

  • Liu YH, Zeng Y, Liao WB, Zhou CQ, Mi ZP, Mao M, Chen L (2012) Altitudinal variation in body size in the rice frog (Rana limnocharis) in southwestern China. Acta Herpetol 7:57–68

    CAS  Google Scholar 

  • Lofts B (1964) Seasonal changes in the functional activity of the interstitial and spermatogenetic tissues of green frog, Rana esculenta. Gen Comp Endocrinol 4:550–562

    Article  CAS  PubMed  Google Scholar 

  • Lüddecke H (2002) Variation and trade-off in reproductive output of the Andean frog Hyla labialis. Oecologia 130:403–410

    Article  Google Scholar 

  • Lüpold S (2013) Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution 67:3052–3060

    PubMed  Google Scholar 

  • Lüpold S, Fitzpatrick JL (2015) Sperm number trumps sperm size in mammalian ejaculate evolution. Proc R Soc B 282:20152122

    Article  PubMed  Google Scholar 

  • Lüpold S, Linz GM, Birkhead TR (2009) Sperm design and variation in the New World blackbirds (Icteridae). Behav Ecol Sociobiol 63:899–909

    Article  Google Scholar 

  • Lüpold S, Westneat DF, Birkhead TR (2011) Geographical variation in sperm morphology in the red-winged blackbird (Agelaius phoeniceus). Evol Ecol 25:373–390

    Article  Google Scholar 

  • Lüpold S, Birkhead TR, Westneat DF (2012) Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus). Behav Ecol Sociobiol 66:1607–1617

    Article  Google Scholar 

  • Lüpold S, Tomkins JL, Simmons LW, Fitzpatrick JL (2014) Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nat Commun 5:3184

    Article  PubMed  CAS  Google Scholar 

  • Lüpold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Buckley Luepold SH, Belote JM, Pitnick S (2016) How sexual selection can drive the evolution of costly sperm ornamentation. Nature. doi:10.1038/nature18005

  • Mallick PK (1986) Mating behaviour of Rana limnocharis. Biol Bull India 8:89–94

    Google Scholar 

  • Mallick PK (1987) The reproductive behaviour and the chronology of meiosis and spermiogenesis in Rana limnocharis, Rana verrucosa and Rana cyanophlyctis. PhD thesis, University of Burdwan

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mi ZP, Liao WB, Jin L, Lou SL, Cheng J, Wu H (2012) Testis asymmetry and sperm length in Rhacophorus omeimontis. Zool Sci 29:368–372

    Article  PubMed  Google Scholar 

  • Minoretti N, Stoll P, Baur B (2013) Heritability of sperm length and adult shell size in the land snail Arianta arbustorum (Linnaeus, 1758). J Molluscan Stud 79:218–224

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  PubMed  Google Scholar 

  • Morisawa M, Suzuki K, Shimizu H, Morisawa S, Yasuda K (1983) Effects of osmolality and potassium on motility of spermatozoa from freshwater cyprinid fishes. J Exp Biol 107:95–103

    CAS  PubMed  Google Scholar 

  • Morrison C, Hero JM (2003) Geographic variation in life-history characteristics of amphibians: a review. J Anim Ecol 72:270–279

    Article  Google Scholar 

  • Olsson M, Madsen T, Shine R (1997) Is sperm really so cheap? Costs of reproduction in male adders, Vipera berus. Proc R Soc Lond B 264:455–459

    Article  Google Scholar 

  • Othman MS, Khonsue W, Kitana J, Thirakhupt K, Robson MG, Kitana N (2011) Reproductive mode of Fejervarya limnocharis (Anura: Ranidae) caught from Mae Sot, Thailand based on its gonadosomatic indices. Asian Herpetol Res 2:41–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker GA, Ball GF (2005) Sperm competition, mating rate and the evolution of testis and ejaculate sizes: a population model. Biol Lett 1:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker GA, Pizzari T (2010) Sperm competition and ejaculate economics. Biol Rev 85:897–934

    Article  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pitcher TE, Stutchbury BJM (1998) Latitudinal variation in testis size in six species of North American songbirds. Can J Zool 76:618–622

    Article  Google Scholar 

  • Pitnick SS, Markow TA, Spicer GS (1999) Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53:1804–1822

    Article  Google Scholar 

  • Preston BT, Stevenson IR, Pemberton JM, Coltman DW, Wilson K (2003) Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success. Proc R Soc Lond B 270:633–640

    Article  CAS  Google Scholar 

  • Ramm SA, Schärer L (2014) The evolutionary ecology of testicular function: size isn’t everything. Biol Rev 89:874–888

    Article  PubMed  Google Scholar 

  • Roberts JD, Byrne PG (2011) Polyandry, sperm competition, and the evolution of anuran amphibians. Adv Study Behav 43:1–53

    Article  Google Scholar 

  • Ryser J (1996) Comparative life histories of a low- and high-elevation population of the common frog Rana temporaria. Amphibia-Reptilia 17:183–195

    Article  Google Scholar 

  • Sasso-Cerri E, de Faria FP, Freymüller E, Miraglia SM (2004) Testicular morphological changes during the seasonal reproductive cycle in the bullfrog Rana catesbeiana. J Exp Zool 301:249–260

    Article  Google Scholar 

  • Schulte-Hostedde AI, Millar JS (2004) Intraspecific variation of testis size and sperm length in the yellow-pine chipmunk (Tamias amoenus): implications for sperm competition and reproductive success. Behav Ecol Sociobiol 55:272–277

    Article  Google Scholar 

  • Schulte-Hostedde AI, Millar JS, Hickling GJ (2005) Condition dependence of testis size in small mammals. Evol Ecol Res 7:143–149

    Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Simmons LW (2001) Sperm competition and its evolutionary consequences in insects. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Simmons LW, Fitzpatrick JL (2012) Sperm wars and the evolution of male fertility. Reproduction 144:519–534

    Article  CAS  PubMed  Google Scholar 

  • Simmons LW, Kotiaho JS (2002) Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Evolution 56:1622–1631

    Article  PubMed  Google Scholar 

  • Simmons LW, Moore AJ (2009) Evolutionary quantitative genetics of sperm. In: Birkhead TR, Hosken DJ, Pitnick S (eds) Sperm biology: an evolutionary perspective. Academic, San Diego, pp 405–434

    Chapter  Google Scholar 

  • Snook RR (2001) Absence of latitudinal clines in sperm characters in North American populations of Drosophila subobscura (Diptera: Drosophilidae). Pan Pac Entomol 77:261–271

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stutchbury BJ, Morton ES (1995) The effect of breeding synchrony on extra-pair mating systems in songbirds. Behaviour 132:675–690

    Article  Google Scholar 

  • Thomsen R, Soltis J, Matsubara M, Matsubayashi K, Onuma M, Takenaka O (2006) How costly are ejaculates for Japanese macaques? Primates 47:272–274

    Article  PubMed  Google Scholar 

  • Tourmente M, Gomendio M, Roldan ERS (2011) Sperm competition and the evolution of sperm design in mammals. BMC Evol Biol 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahed K, Parker DJ (2012) The evolution of large testes: sperm competition or male mating rate? Ethology 118:107–117

    Article  Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Vasudeva R, Deeming DC, Eady PE (2014) Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus. J Evol Biol 27:1811–1818

    Article  CAS  PubMed  Google Scholar 

  • Vieites DR, Nieto-Román S, Barluenga M, Palanca A, Vences M, Meyer A (2004) Post-mating clutch piracy in an amphibian. Nature 431:305–308

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xue W, Li N, Wang X, Jiang H, Xu H (2006) Hibernation of Rana limnocharis in Shanghai farmland. Chin J Ecol 25:1289–1291

    Google Scholar 

  • Wells KD (2010) The ecology and behavior of amphibians. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Xu F, Adler GH, Li Y (2013) Covariation in insular life-history traits of the rice frog (Fejervarya limnocharis) in eastern China. Asian Herpetol Res 4:28–35

    Article  Google Scholar 

  • Zeng Y, Lou SL, Liao WB, Jehle R (2014) Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location. BMC Evol Biol 14:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Shang Ling Lou, Mao Jun Zhong, and Cheng Chen for assistance with lab work, and M. Schäfer and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Bo Liao.

Ethics declarations

Funding

Financial support was provided by the Sichuan Province Outstanding Youth Academic Technology Leaders Program (2013JQ0016) and Sichuan Province Department of Education Innovation Team Project (14TD0015; 15TD003519) to WBL and by the Swiss National Science Foundation (PZ00P3_154767) to SL.

Ethical standards

All experiments involving the sacrifice of live animals were approved by the Animal Ethics Committee at China West Normal University. We declare that all animals used in the study were treated humanely and ethically following all applicable institutional animal care guidelines in China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Summers

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Yang, S.N., Liao, W.B. et al. Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav Ecol Sociobiol 70, 1197–1208 (2016). https://doi.org/10.1007/s00265-016-2128-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-016-2128-9

Keywords

Navigation