Skip to main content
Log in

Radio tagging reveals the roles of corpulence, experience and social information in ant decision making

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

An Erratum to this article was published on 18 February 2009

Abstract

Ant colonies are factories within fortresses (Oster and Wilson 1978). They run on resources foraged from an outside world fraught with danger. On what basis do individual ants decide to leave the safety of the nest? We investigated the relative roles of social information (returning nestmates), individual experience and physiology (lipid stores/corpulence) in predicting which ants leave the nest and when. We monitored Temnothorax albipennis workers individually using passive radio-frequency identification technology, a novel procedure as applied to ants. This method allowed the matching of individual corpulence measurements to activity patterns of large numbers of individuals over several days. Social information and physiology are both good predictors of when an ant leaves the nest. Positive feedback from social information causes bouts of activity at the colony level. When certain social information is removed from the system by preventing ants returning, physiology best predicts which ants leave the nest and when. Individual experience is strongly related to physiology. A small number of lean individuals are responsible for most external trips. An individual’s nutrient status could be a useful cue in division of labour, especially when public information from other ants is unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Behrends A, Scheiner R, Baker N, Amdam GV (2007) Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 42:1146–1153

    Article  PubMed  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in insect societies. Ann Rev Entomol 46:413–430

    Article  CAS  Google Scholar 

  • Blanchard GB, Orledge GM, Reynolds SE, Franks NR (2000) Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim Behav 59:723–738

    Article  PubMed  Google Scholar 

  • Boi S, Couzin ID, Del Buono N, Franks NR, Britton NF (1999) Coupled oscillators and activity waves in ant colonies. Proc R Soc Lond B 266:371–378

    Article  Google Scholar 

  • Børgesen LW (2000) Nutritional function of replete workers in the Pharaoh’s ant, Monomorium pharaonis (L.). Insect Soc 47:141–146

    Article  Google Scholar 

  • Bouwma AM, Howard KJ, Jeanne RL (2005) Parasitism in a social wasp: effect of gregarines on foraging behavior, colony productivity, and adult mortality. Behav Ecol Sociobiol 59:222–233

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46:471–510

    Article  CAS  Google Scholar 

  • Cassil D (2003) Rules of supply and demand regulate recruitment to food in an ant society. Behav Ecol Sociobiol 54:441–450

    Article  Google Scholar 

  • Cole BJ (1991) Short-term activity cycles in ants—generation of periodicity by worker interaction. Am Nat 137:244–259

    Article  Google Scholar 

  • Cooper WE (1998) Risk factors and emergence from refuge in the lizard Eumeces laticeps. Behaviour 135:1065–1076

    Google Scholar 

  • Cowlishaw G (1997) Refuge use and predation risk in a desert baboon population. Anim Behav 54:241–253

    Article  PubMed  Google Scholar 

  • Dall SRX, Giraldeau LA, Olsson O, McNamara JM, Stephens DW (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:187–193

    Article  PubMed  Google Scholar 

  • Dechaume-Moncharmont F-X, Dornhaus A, Houston AI, McNamara JM, Collins EJ, Franks NR (2005) The hidden cost of information in collective foraging. Proc R Soc Lond B 272:1689–1695. doi:10.1098/rspb.2005.3137

    Article  Google Scholar 

  • Eliassen S, Jørgensen C, Mangel M, Giske J (2007) Exploration or exploitation: life expectancy changes the value of learning in foraging strategies. Oikos 116:513–523

    Article  Google Scholar 

  • Franks NR, Bryant S (1987) Rhythmical patterns of activity within the nests of ants. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. J. Peperny, Munich, pp 122–123

    Google Scholar 

  • Franks NR, Mallon EB, Bray HE, Hamilton MJ, Mischler TC (2003) Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Anim Behav 65:215–223. doi:10.1006/anbe.2002.2032

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Metherell B, Nelson T, Lanfear SA, Symes W (2006) Not everything that counts can be counted: ants use multiple metrics for a single nest trait. Proc R Soc Lond B Biol Sci 273:165–169. doi:10.1098/rspb.2005.3312

    Article  Google Scholar 

  • Gentry JB (1974) Response to predation by colonies of Florida harvester ant, Pogonomyrmex badius. Ecology 55:1328–1338

    Article  Google Scholar 

  • Gordon DM (1987) Group level dynamics in harvester ants: young colonies and the role of patrolling. Anim Behav 35:833–834

    Article  Google Scholar 

  • Gordon D (1992) How colony growth affects forager intrusion in neighbouring harvester ant colonies. Behav Ecol Sociobiol 31:417–427

    Article  Google Scholar 

  • Greene MJ, Gordon D (2007) Interaction rate informs harvester ant task decisions. Behav Ecol 18:451–455

    Article  Google Scholar 

  • Hasegawa E (1993) Caste specialization in food storage in the dimorphic ant Colobopsis nipponicus (Wheeler). Insect Soc 40:261–271

    Article  Google Scholar 

  • Hatcher MJ, Tofts C, Franks NR (1992) Mutual exclusion as a mechanism for information exchange within ant nests. Naturwissenschaften 79:32–34

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Isbell LA, Cheney DL, Seyfarth RM (1993) Are immigrant vervet monkeys, Cercopithecus aethiops, at greater risk of mortality than residents. Anim Behav 45:729–734

    Article  Google Scholar 

  • Kühn-Bühlmann S, Wehner R (2006) Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. J Neurobiol 66:511–521

    Article  PubMed  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303

    Article  Google Scholar 

  • Nielsen MG (2001) Energetic cost of foraging in the ant Rhytidoponera aurata in tropical Australia. Physiol Entomol 26:248–253

    Article  Google Scholar 

  • O’Donnell S, Bulova SJ (2007) Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies. Insect Soc 54:203–210. doi:10.1007/s00040-007-0945-6

    Article  Google Scholar 

  • O’Donnell S, Jeanne RL (1995) Worker lipid stores decrease with outside nest task performance in wasps: implications for the evolution of age polyethism. Experientia 51:749–752

    Article  CAS  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Pallet MJ, Plowright RC (1979) Traffic through the nest entrance of a colony of Vespula arenaria (Hymenoptera: Vespidae). Can Entomol 111:385–390

    Google Scholar 

  • Plowright RC (1979) Social facilitation at the nest entrances of bumble bees and wasps. Insect Soc 26:223–231

    Article  Google Scholar 

  • Porter SD, Jorgensen CD (1981) Foragers of the harvester ant, Pogonomyrmex owyheei—a disposable caste. Behav Ecol Sociobiol 9:247–256

    Article  Google Scholar 

  • Pratt SC (2005) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav Ecol 16:488–496

    Article  Google Scholar 

  • Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 17:1308–1312. doi:10.1016/j.cub.2007.06.047

    Article  PubMed  CAS  Google Scholar 

  • Ruxton GD, Lee J, Hansell MH (2001) Wasps enter and leave their nest at regular intervals. Insectes Soc 48:363–365. doi:10.1007/PL00001792

    Article  Google Scholar 

  • Schafer R, Holmes S, Gordon DM (2006) Forager activation and food availability in harvester ants. Anim Behav 71:815–822

    Article  Google Scholar 

  • Schmid-Hempel P, Schmid-Hempel R (1984) Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect Soc 31:345–360. doi:10.1007/BF02223652

    Article  Google Scholar 

  • Sendova-Franks AB, Franks NR (1993) Task allocation in ant colonies within variable environments (a study of temporal polyethism: experimental). Bull Math Biol 55:75–96

    Article  Google Scholar 

  • Sih A (1992) Prey uncertainty and the balancing of antipredator and feeding needs. Am Nat 139:1052–1069

    Article  Google Scholar 

  • Stamps JA, Krishnan V, Reid ML (2005) Search costs and habitat selection by dispersers. Ecology 86:510–518

    Article  Google Scholar 

  • Streit S, Bock F, Pirk CWW, Tautz J (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106:169–171

    Article  PubMed  Google Scholar 

  • Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145

    Article  PubMed  CAS  Google Scholar 

  • Thornby JI (1972) A robust test for linear regression. Biometrics 28:553–543

    Article  Google Scholar 

  • Toth AL, Robinson GE (2005) Worker nutrition and division of labour in honeybees. Anim Behav 69:427–435

    Article  Google Scholar 

  • Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208:4641–4649

    Article  PubMed  Google Scholar 

  • Tripet F, Nonacs P (2004) Foraging for work and age-based polyethism: the roles of age and experience on task choice in ants. Ethology 110:863–877

    Article  Google Scholar 

  • Tschinkel WR (1987) Seasonal life history and nest architecture of a winter-active ant, Prenolepis imparis. Insect Soc 34:143–164. doi:10.1007/BF02224081

    Article  Google Scholar 

  • Tschinkel WR (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insect Soc 45:385–410

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Verhaeghe JC, Deneubourg JL (1983) Experimental study and modelling of food recruitment in the ant Tetramorium impurum (Hym. Form.). Insectes Soc 303:47–360

    Google Scholar 

  • Weier JA, Feener DH (1995) Foraging in the seed-harvester ant genus Pogonomyrmex: are energy costs important. Behav Ecol Sociobiol 36:291

    Article  Google Scholar 

  • Welbergen JA (2006) Timing of the evening emergence from day roosts of the grey-headed flying fox Pteropus poliocephalus: the effects of predation risk, foraging needs, and social context. Behav Ecol Sociobiol 60:311–322

    Article  Google Scholar 

  • Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. The organization of mass-foraging. Anim Behav 10:134–147

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap, Harvard, Cambridge, MA

    Google Scholar 

  • Wolschin F, Amdam GV (2007) Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Sci 5:10. doi:10.1186/1477-5956-5-10

    Article  PubMed  Google Scholar 

  • Yang AS (2006) Seasonality, division of labor, and dynamics of colony-level nutrient storage in the ant Pheidole morrisi. Insectes Soc 53:456–462

    Article  Google Scholar 

Download references

Acknowledgements

We thank A.E. Walsby and D. Holland for advice and help with weighing gasters; E. Franklin, R. Archer, Z. Demery, J. Green, B. Johnson, R. Matsuura, J. Roy, P. Sleeman, M.J.H. Steiner, M. Sullivan, J. Wood and A. Whitehead for experimental assistance; S. Perez-Espona, E.A. Langridge and N. Stroeymeyt for useful discussions. NRF & EJHR acknowledge EPSRC grant EP/D076226/1; ABS-F and TOR acknowledge EPSRC grant EP/E061796/1. The experiments described comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elva J. H. Robinson.

Additional information

Communicated by: M. Beekman

An erratum to this article can be found at http://dx.doi.org/10.1007/s00265-009-0715-8

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 Supplementary information (DOC 117 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, E.J.H., Richardson, T.O., Sendova-Franks, A.B. et al. Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behav Ecol Sociobiol 63, 627–636 (2009). https://doi.org/10.1007/s00265-008-0696-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0696-z

Keywords

Navigation