Skip to main content

Advertisement

Log in

Differential expressions of the lysyl oxidase family and matrix metalloproteinases-1, 2, 3 in posterior cruciate ligament fibroblasts after being co-cultured with synovial cells

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The adult human posterior cruciate ligament (PCL) has poor functional healing response. The synovial tissue, which surrounds the PCL ligament, might be the major regulator of the microenvironment in the joint cavity after PCL injury, thus affecting the healing process. Here we establish a novel co-culture system for PCL fibroblasts and synovial cells (SC) in vitro to explore the direct influence of paracrine on PCL cells by characterizing the different expressions of the lysyl oxidase family (LOXs) and matrix metalloproteinases (MMP-1, 2, 3), which respectively facilitate extracellular matrix (ECM) repair and degradation.

Methods

Total RNA was harvested, reverse transcribed and assessed by semi-quantitative PCR and real-time PCR for the expression of LOXs and MMP-1, 2, 3 messenger RNAs. MMP-2 activity was assayed from the collected culture media samples by using zymography.

Results

We found co-culture could promote gene expressions of the LOXs and MMP-1, 2, 3 in normal PCL fibroblasts. But in injured PCL, we found that matrix crosstalk induced an increase of the MMP-1, 2, 3 expressions and a down-regulation of the LOXs.

Conclusion

Based on these results, the crosstalk between PCL and SC strongly modified homeostatic balance of ECM and appeared to have a significant impact on PCL wound healing; decreased expression of cross-linking enzymes (LOXs) and increased expression of ECM-degrading proteinases (MMP-1, 2, 3) might be of great contribution to poor healing ability of PCL ligament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mariani PP, Becker R, Rihn J et al (2003) Surgical treatment of posterior cruciate ligament and posterolateral corner injuries. An anatomical, biomechanical and clinical review. Knee 10:311–324

    Article  PubMed  Google Scholar 

  2. Tang Z, Yang L, Xue R et al (2009) Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: Involvement of the p65 subunit of NF-κB. Wound Repair Regen 17:709–716

    Article  PubMed  Google Scholar 

  3. Ouyang HW, Goh JCH, Mo XM et al (2002) Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymericfilms. Mater Sci Eng C 20:63–69

    Article  Google Scholar 

  4. Grassmayr MJ, Parker DA, Coolican MRJ et al (2008) Posterior cruciate ligament deficiency: Biomechanical and biological consequences and the outcomes of conservative treatment A systematic review. J Sci Med Sport 11:433–443

    Article  PubMed  Google Scholar 

  5. Keller PM, Shelbourne KD, McCarroll JR et al (1993) Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med 21:132–136

    Article  CAS  PubMed  Google Scholar 

  6. Oiestad BE, Engebretsen L, Storheim K et al (2009) Knee osteoarthritis after anterior cruciate ligament injury a systematic review. Am J Sports Med 37:1434–1443

    Article  PubMed  Google Scholar 

  7. Woo SL, Chan SS, Yamaji T (1997) Biomechanics of knee ligament healing, repair and reconstruction. J Biomech 30:431–439

    Article  CAS  PubMed  Google Scholar 

  8. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  9. Vandommelen BA, Fowler PJ (1989) Anatomy of the posterior cruciate ligament. A review. Am J Sports Med 17:24–29

    Article  CAS  Google Scholar 

  10. Irie K, Uchiyama E, Iwaso H (2003) Intraarticular inflammatory cytokines in acute cruciate ligament injured knee. Knee 10:93–96

    Article  PubMed  Google Scholar 

  11. Tang Z, Yang L, Wang Y et al (2009) Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J Orthop Res 27:243–248

    Article  CAS  PubMed  Google Scholar 

  12. Oellers P, Schallenberg M, Stupp T et al (2009) A coculture assay to visualize and monitor interactions between migrating glioma cells and nerve fibers. Nat Protoc 4:923–927

    Article  CAS  PubMed  Google Scholar 

  13. Tandara AA, Mustoe TA (2011) MMP-and TIMP-secretion by human cutaneous keratinocytes and fibroblasts-impact of coculture and hydration. J Plast Reconstr Aesthet 64:108–116

    Article  Google Scholar 

  14. Suzuki K, Saito J, Yanai R et al (2003) Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog Retin Eye Res 22:113–133

    Article  CAS  PubMed  Google Scholar 

  15. Wang HQ, Bai L, Shen BR, Yan ZQ et al (2007) Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of β1-integrin and phosphatidylinositol 3-kinase/Akt. Eur J Cell Biol 86:51–62

    Article  CAS  PubMed  Google Scholar 

  16. Zhou D, Lee HS, Villarreal F et al (2005) Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res 23:949–957

    Article  CAS  PubMed  Google Scholar 

  17. Xie J, Jiang JH, Zhang YJ et al (2011) Up-regulation expressions of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts induced by transforming growth factor-beta. Int Orthop 36:207–213

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kim YH, Peyrol S, So CK et al (1999) Coexpression of the lysyl oxidase-like gene (LOXL) and the gene encoding type III procollagen in induced liver fibrosis. J Cell Biochem 72:181–188

    Article  PubMed  Google Scholar 

  19. Jourdan-Le Saux C, Tronecker H, Bogic L et al (1999) The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J Cell Biochem 274:12939–12944

    CAS  Google Scholar 

  20. Jourdan-Le Saux C, Tomsche A, Ujfalusi A et al (2001) Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein. Genomics 74:211–218

    Article  CAS  PubMed  Google Scholar 

  21. Asuncion L, Fogelgren B, Fong KSK et al (2001) A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matris Biol 20:487–491

    Article  CAS  Google Scholar 

  22. Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316

    Article  CAS  PubMed  Google Scholar 

  23. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: Regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang J, Yang L, Tang Z et al (2009) Expression of MMPs and TIMPs family in human ACL and MCL fibroblasts. Connect Tissue Res 50:7–13

    Article  CAS  PubMed  Google Scholar 

  25. Hsieh AH, Tsai CMH, Ma QJ et al (2000) Time-dependent increase in type-III collagen gene expression in medial collateral ligament fibroblasts under cyclic strains. J Orthop Res 18:220–227

    Article  CAS  PubMed  Google Scholar 

  26. Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic event of wound-healing coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12:373–398

    Article  CAS  PubMed  Google Scholar 

  27. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  28. Dandy DJ, Pusey RJ (1982) The long-term results of unrepaired tears of the posterior cruciate ligament. J Bone Joint Surg (Br) 64:92–94

    CAS  Google Scholar 

  29. Keller PM, Shelbourne KD, McCarroll JR et al (1993) Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med 21:132–136

    Article  CAS  PubMed  Google Scholar 

  30. Andrish J, Holmes R (1979) Effects of synovial fluid on fibroblasts in tissue culture. Clin Orthop Relat Res 279–283

  31. Tang Z, Yang L, Wang Y et al (2009) Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J Orthop Res 27:243–248

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Yang L, Zhang J et al (2009) Differential MMP-2 activity induced by mechanical compression and inflammatory factors in human synoviocytes. Mol Cell Biomech 7:105–114

    Google Scholar 

  33. Zhang Y, Huang W, Jiang J et al (2014) Influence of TNF-a and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts. Knee Surg Sports Traumatol Arthrosc 22(9):1997–2006

  34. Cameron ML, Fu FH, Paessler HH et al (1994) Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 2:38–44

    Article  CAS  PubMed  Google Scholar 

  35. Kurpinski K, Chu J, Hashi C et al (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103:16095–16100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lee AA, Delhaas T, McCulloch AD et al (1999) Differential responses of adult rat cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31:1833–1843

    Article  CAS  PubMed  Google Scholar 

  37. Lee AA, Delhaas T, Waldman LK et al (1996) An equibiaxial strain system for cultured cells. Am J Physiol Cell Physiol 271:C1400–C1408

    CAS  Google Scholar 

  38. Lee J, Harwood FL, Akeson WH et al (1998) Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments. Iowa Orthop J 18:19–25

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Creemers LB, Jansen IDC, Docherty AJP et al (1998) Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue. Matrix Biol 17:35–46

    Article  CAS  PubMed  Google Scholar 

  40. Bramono DS, Richmond JC, Weitzel PP et al (2004) Matrix metalloproteinases and their clinical applications in orthopaedics. Clin Orthop Relat Res 428:272–285

    Article  PubMed  Google Scholar 

  41. Xie J, Wang C, Yin L et al (2013) IL-1β influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts. Int Orthop 37(3):495–505

  42. Wang Y, Tang Z, Xue R et al (2011) Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study. J Orthop Res 29:1008–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Innovation and Attracting Talents Program for College and University (“111” Project) (B06023), NSF Projects (10672195, 30870607), CSTC2008BB5192, Sharing Fund of Chongqing University’s large-scale equipment (2009063038) and by NIH AR45635 (USA).

Declaration of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Paul Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xie, J., Jiang, J. et al. Differential expressions of the lysyl oxidase family and matrix metalloproteinases-1, 2, 3 in posterior cruciate ligament fibroblasts after being co-cultured with synovial cells. International Orthopaedics (SICOT) 39, 183–191 (2015). https://doi.org/10.1007/s00264-014-2573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2573-x

Keywords

Navigation