Skip to main content

Advertisement

Log in

Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Clear cell renal cell carcinoma (ccRCC) constitutes the most common renal cell carcinoma subtype and has long been recognized as an immunogenic cancer. As such, significant attention has been directed toward optimizing immune-checkpoints (IC)-based therapies. Despite proven benefits, a substantial number of patients remain unresponsive to treatment, suggesting that yet unreported, immunosuppressive mechanisms coexist within tumors and their microenvironment. Here, we comprehensively analyzed and ranked forty-four immune-checkpoints expressed in ccRCC on the basis of in‐depth analysis of RNAseq data collected from the TCGA database and advanced statistical methods designed to obtain the group of checkpoints that best discriminates tumor from healthy tissues. Immunohistochemistry and flow cytometry confirmed and enlarged the bioinformatics results. In particular, by using the recursive feature elimination method, we show that HLA-G, B7H3, PDL-1 and ILT2 are the most relevant genes that characterize ccRCC. Notably, ILT2 expression was detected for the first time on tumor cells. The levels of other ligand-receptor pairs such as CD70:CD27; 4-1BB:4-1BBL; CD40:CD40L; CD86:CTLA4; MHC-II:Lag3; CD200:CD200R; CD244:CD48 were also found highly expressed in tumors compared to adjacent non-tumor tissues. Collectively, our approach provides a comprehensible classification of forty-four IC expressed in ccRCC, some of which were never reported before to be co-expressed in ccRCC. In addition, the algorithms used allowed identifying the most relevant group that best discriminates tumor from healthy tissues. The data can potentially assist on the choice of valuable immune-therapy targets which hold potential for the development of more effective anti-tumor treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

HLA-G:

Human leukocyte antigen-G

IC:

Immune-checkpoints

ILT2:

Immunoglobulin-like transcript 2 (LILRB1)

ILT4:

Immunoglobulin-like transcript 4 (LILRB2)

RFEM:

Recursive feature elimination method

SVM:

Support vector machine

TCGA:

The Cancer Genome Atlas

References

  1. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F (2015) International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67:519–530

    Article  PubMed  Google Scholar 

  2. Brugarolas J (2013) PBRM1 and BAP1 as novel targets for renal cell carcinoma. Cancer J 19:324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH (2018) Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol 36:JCO2018792549

    Google Scholar 

  4. Levi-Schaffer F, Mandelboim O (2018) Inhibitory and coactivating receptors recognising the same ligand: immune homeostasis exploited by pathogens and tumours. Trends Immunol 39:112–122

    Article  CAS  PubMed  Google Scholar 

  5. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S et al (2019) Advances in cancer immunotherapy 2019—latest trends. J Exp Clin Cancer Res 38:268–278

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 1(381):255

    Article  Google Scholar 

  8. Lalani AA, McGregor BA, Albiges L, Choueiri TK, Motzer R, Powles T et al (2019) Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. Eur Urol 1:100–110

    Article  Google Scholar 

  9. George S, Rini BI, Hammers HJ (2019) Emerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: a review. JAMA Oncol 5:411–421

    Article  PubMed  Google Scholar 

  10. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  11. Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y (2018) Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 11:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(812–30):e14

    Google Scholar 

  14. Rover LK, Gevensleben H, Dietrich J, Bootz F, Landsberg J, Goltz D et al (2018) PD-1 (PDCD1) promoter methylation is a prognostic factor in patients with diffuse lower-grade gliomas harboring isocitrate dehydrogenase (IDH) mutations. EBioMedicine 28:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lopez JI, Angulo JC (2018) Pathological bases and clinical impact of intratumor heterogeneity in clear cell renal cell carcinoma. Curr Urol Rep 19:3

    Article  PubMed  Google Scholar 

  16. Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:91

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    Article  CAS  PubMed  Google Scholar 

  20. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422

    Article  Google Scholar 

  21. Claeskens G, Croux C, Van Kerckhoven J (2008) An information criterion for variable selection in support vector machines. J Mach Learn Res 9:541–558

    Google Scholar 

  22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  23. Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  CAS  Google Scholar 

  25. Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157

    Article  PubMed  Google Scholar 

  26. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol 70:93–105

    Article  PubMed  Google Scholar 

  27. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desgrandchamps F, LeMaoult J, Goujon A, Riviere A, Rivero-Juarez A, Djouadou M et al (2018) Prediction of non-muscle-invasive bladder cancer recurrence by measurement of checkpoint HLAG's receptor ILT2 on peripheral CD8(+) T cells. Oncotarget 9:33160–33169

    Article  PubMed  PubMed Central  Google Scholar 

  29. Junker K, Hindermann W, von Eggeling F, Diegmann J, Haessler K, Schubert J (2005) CD70: a new tumor specific biomarker for renal cell carcinoma. The Journal of urology 173:2150–2153

    Article  CAS  PubMed  Google Scholar 

  30. Hassan SB, Sorensen JF, Olsen BN, Pedersen AE (2014) Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol 36:96–104

    Article  PubMed  CAS  Google Scholar 

  31. Vinay DS, Kwon BS (2012) Immunotherapy of cancer with 4-1BB. Mol Cancer Therapeutics 11:1062–1070

    Article  CAS  Google Scholar 

  32. Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131:49–57

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen YP, Zhang J, Wang YQ, Liu N, He QM, Yang XJ et al (2017) The immune molecular landscape of the B7 and TNFR immunoregulatory ligand-receptor families in head and neck cancer: a comprehensive overview and the immunotherapeutic implications. Oncoimmunology 6:e1288329

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jung K, Choi I (2013) Emerging co-signaling networks in T cell immune regulation. Immune Netw 13:184–193

    Article  PubMed  PubMed Central  Google Scholar 

  37. Podojil JR, Miller SD (2017) Potential targeting of B7-H4 for the treatment of cancer. Immunol Rev 276:40–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK et al (2017) B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol 6:66–75

    PubMed  PubMed Central  Google Scholar 

  39. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB et al (2017) Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31:501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer research 74:1924–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C et al (2017) Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. Oncoimmunology 6:e1342023

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tronik-Le Roux D, Renard J, Verine J, Renault V, Tubacher E, LeMaoult J et al (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11:1561–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117:7021–7031

    Article  CAS  PubMed  Google Scholar 

  44. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144

    Article  CAS  PubMed  Google Scholar 

  45. Zhang P, Guo X, Li J, Yu S, Wang L, Jiang G et al (2015) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6:13550–13563

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to Dr. Nathalie Rouas-Freiss for very instructive discussions and critical reading of the manuscript. We are also thankful to Dr. Marcela Garcia and Santiago Miriuka for their enlightened suggestions on tumor culture procedures. We kindly appreciate the experimental assistance of Alix Jacquier on cytometric assays and Jerome Delmotte on immunochemistry. The results shown are based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcha.

Funding

This work was funded by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Ecole CentraleSupélec, Université Paris-Saclay.

Author information

Authors and Affiliations

Authors

Contributions

DTLR was involved in conceptualization, formal analysis, writing original draft, supervision; MS helped in methodology, software, formal analysis, writing original draft; MB contributed to methodology, software, formal analysis, writing original draft; JV performed experiments, formal analysis and diagnosis; MBP contributed to methodology, performed experiments; MD performed experiments and analysis; FB performed experiments; JLM contributed to methodology, formal analysis, writing original draft; FD provided samples; S.L. contributed to formal analysis, writing original draft; PHC helped in formal analysis, methodological supervision, writing-original draft, funding; EDC was involved in research design, funding.

Corresponding author

Correspondence to Diana Tronik-Le Roux.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

The study was approved by the institutional ethics committee of Saint-Louis Hospital, Paris.

Informed consent

Patients provided written informed consent before sampling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronik-Le Roux, D., Sautreuil, M., Bentriou, M. et al. Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets. Cancer Immunol Immunother 69, 1237–1252 (2020). https://doi.org/10.1007/s00262-020-02530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02530-x

Keywords

Navigation