Skip to main content

Advertisement

Log in

Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) are a family of enzymes that influence expression of genes implicated in tumor initiation, progression, and anti-tumor responses. In addition to their canonical role in deacetylation of histones, HDACs regulate many non-canonical targets, such as Signal Transducer and Activator of Transcription 3 (STAT3). We hypothesize that tumors use epigenetic mechanisms to dysregulate CD1d-mediated antigen presentation, thereby impairing the ability of natural killer T (NKT) cells to recognize and destroy malignant cells. In this study, we pre-treated CD1d-expressing tumor cells with HDAC inhibitors (HDACi) and assessed CD1d-dependent NKT cell responses to mantle cell lymphoma (MCL). Pre-treatment with Trichostatin-A, a pan-HDACi, rapidly enhanced both CD1d- and MHC class II-mediated antigen presentation. Similarly, treatment of MCL cells with other HDACi resulted in enhanced CD1d-dependent NKT cell responses. The observed changes are due, at least in part, to an increase in both CD1D mRNA and CD1d cell surface expression. Mechanistically, we found that HDAC2 binds to the CD1D promoter. Knockdown of HDAC2 in tumor cells resulted in a significant increase in CD1d-mediated antigen presentation. In addition, treatment with HDACi inhibited STAT3 and STAT3-regulated inflammatory cytokine secretion by MCL cells. We demonstrated that MCL-secreted IL-10 inhibits CD1d-mediated antigen presentation and pre-treatment with TSA abrogates secretion of IL-10 by MCL. Taken together, our studies demonstrate the efficacy of HDACi in restoring anti-tumor responses to MCL through both cell-intrinsic and cell-extrinsic mechanisms and strongly implicate a role for HDACi in enhancing immune responses to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACTB:

Beta-actin

ChIP:

Chromatin immunoprecipitation

GM:

Geometric mean

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor(s)

IRF1:

Interferon response factor 1

MCL:

Mantle cell lymphoma

NKT:

Natural killer T

P/I:

Phorbol 12-myristate 13-acetate and ionomycin

TSA:

Trichostatin-A

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536. doi:10.1158/0008-5472.can-05-4128

    Article  CAS  PubMed  Google Scholar 

  3. Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022. doi:10.1038/ni.2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Terabe M, Berzofsky JA (2014) The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 63:199–213. doi:10.1007/s00262-013-1509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J, Sun W, Subrahmanyam PB, Page C, Younger KM, Tiper IV, Frieman M, Kimball AS, Webb TJ (2014) NKT cell responses to B cell lymphoma. Med Sci 2:82–97. doi:10.3390/medsci2020082

    CAS  Google Scholar 

  6. Brossay L, Kronenberg M (1999) Highly conserved antigen-presenting function of CD1d molecules. Immunogenetics 50:146–151

    Article  CAS  PubMed  Google Scholar 

  7. Terabe M, Berzofsky JA (2014) The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 63(3):199–213. doi:10.1007/s00262-013-1509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robertson FC, Berzofsky JA, Terabe M (2014) NKT cell networks in the regulation of tumor immunity. Front Immunol 5:543. doi:10.3389/fimmu.2014.00543

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12:239–252

    Article  CAS  PubMed  Google Scholar 

  10. Sun W, Subrahmanyam PB, East JE, Webb TJ (2012) Connecting the dots: artificial antigen presenting cell-mediated modulation of natural killer T cells. J Interferon Cytokine Res 32:505–516. doi:10.1089/jir.2012.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA (2001) Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol. 167:4046–4050

    Article  CAS  PubMed  Google Scholar 

  12. Molling JW, Kolgen W, van der Vliet HJ et al (2005) Peripheral blood IFN-gamma-secreting Valpha24 + Vbeta11 + NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 116:87–93. doi:10.1002/ijc.20998

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu K, Hidaka M, Kadowaki N et al (2006) Evaluation of the function of human invariant NKT cells from cancer patients using alpha-galactosylceramide-loaded murine dendritic cells. J Immunol. 177:3484–3492

    Article  CAS  PubMed  Google Scholar 

  14. Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    CAS  PubMed  Google Scholar 

  15. Romero JM, Jimenez P, Cabrera T, Cozar JM, Pedrinaci S, Tallada M, Garrido F, Ruiz-Cabello F (2005) Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 113:605–610. doi:10.1002/ijc.20499

    Article  CAS  PubMed  Google Scholar 

  16. Bubenik J (2004) MHC class I down-regulation: tumour escape from immune surveillance? (review). Int J Oncol 25:487–491

    CAS  PubMed  Google Scholar 

  17. Khanna R (1998) Tumour surveillance: missing peptides and MHC molecules. Immunol Cell Biol 76:20–26. doi:10.1046/j.1440-1711.1998.00717.x

    Article  CAS  PubMed  Google Scholar 

  18. Gunnellini M, Falchi L (2012) Therapeutic activity of Lenalidomide in mantle cell lymphoma and indolent non-Hodgkin’s lymphomas. Adv Hematol. 2012:523842. doi:10.1155/2012/523842

    PubMed  PubMed Central  Google Scholar 

  19. Dreyling M, Ferrero S, Hermine O (2014) How to manage mantle cell lymphoma. Leukemia 28:2117–2130. doi:10.1038/leu.2014.171

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Galán P, Dreyling M, Wiestner A (2011) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117:26–38. doi:10.1182/blood-2010-04-189977

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheng F, Wang H, Horna P et al (2012) Stat3 inhibition augments the immunogenicity of B-cell lymphoma cells, leading to effective antitumor immunity. Cancer Res 72:4440–4448. doi:10.1158/0008-5472.can-11-3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu K, Chen N, Zhou XX, Ge XL, Feng LL, Li PP, Li XY, Geng LY, Wang X (2015) The STAT3 inhibitor WP1066 synergizes with vorinostat to induce apoptosis of mantle cell lymphoma cells. Biochem Biophys Res Commun 464:292–298. doi:10.1016/j.bbrc.2015.06.145

    Article  CAS  PubMed  Google Scholar 

  23. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B (2009) Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 1171:59–76. doi:10.1111/j.1749-6632.2009.04911.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang Q, Bournazou E, Sansone P et al (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15:848–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carpenter RL, Lo HW (2014) STAT3 Target genes relevant to human cancers. Cancers (Basel). 6:897–925. doi:10.3390/cancers6020897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. doi:10.1172/jci69738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799:717–725. doi:10.1016/j.bbagrm.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woan KV, Sahakian E, Sotomayor EM, Seto E, Villagra A (2012) Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 90:55–65. doi:10.1038/icb.2011.96

    Article  CAS  PubMed  Google Scholar 

  29. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969. doi:10.1158/1078-0432.ccr-08-2785

    Article  CAS  PubMed  Google Scholar 

  30. Ray S, Lee C, Hou T, Boldogh I, Brasier AR (2008) Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res 36:4510–4520. doi:10.1093/nar/gkn419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18. doi:10.1016/j.gde.2007.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brutkiewicz RR, Bennink JR, Yewdell JW, Bendelac A (1995) TAP-independent, beta 2-microglobulin-dependent surface expression of functional mouse CD1.1. J Exp Med 182:1913–1919

    Article  CAS  PubMed  Google Scholar 

  34. Roberts TJ, Sriram V, Spence PM, Gui M, Hayakawa K, Bacik I, Bennink JR, Yewdell JW, Brutkiewicz RR (2002) Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol. 168:5409–5414

    Article  CAS  PubMed  Google Scholar 

  35. Amin HM, McDonnell TJ, Medeiros LJ, Rassidakis GZ, Leventaki V, O’Connor SL, Keating MJ, Lai R (2003) Characterization of 4 mantle cell lymphoma cell lines. Arch Pathol Lab Med 127:424–431. doi:10.1043/0003-9985(2003)127<0424:comclc>2.0.co;2

    PubMed  Google Scholar 

  36. East JE, Sun W, Webb TJ (2012) Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells. J Vis Exp. 70 doi:10.3791/4333

  37. Chen QY, Jackson N (2004) Human CD1D gene has TATA boxless dual promoters: an SP1-binding element determines the function of the proximal promoter. J Immunol. 172:5512–5521

    Article  CAS  PubMed  Google Scholar 

  38. Yang PM, Lin PJ, Chen CC (2012) CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1. Epigenetics 7:390–399. doi:10.4161/epi.19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Batalo M, Bose P, Holkova B, Grant S (2014) Targeting mantle cell lymphoma with a strategy of combined proteasome and histone deacetylase inhibition. In: Dou PQ (ed) Resistance to proteasome inhibitors in cancer: molecular mechanisms and strategies to overcome resistance. Springer International Publishing, Cham, pp 149–179

    Google Scholar 

  40. Mittal SK, Roche PA (2015) Suppression of antigen presentation by IL-10. Curr Opin Immunol 34:22–27. doi:10.1016/j.coi.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alvarez-Breckenridge CA, Yu J, Price R et al (2012) The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 86:4566–4577. doi:10.1128/jvi.05545-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen QY, Zhang T, Pincus SH, Wu S, Ricks D, Liu D, Sun Z, Maclaren N, Lan MS (2010) Human CD1D gene expression is regulated by LEF-1 through distal promoter regulatory elements. J Immunol 184:5047–5054. doi:10.4049/jimmunol.0901912

    Article  CAS  PubMed  Google Scholar 

  43. Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165:7017–7024

    Article  CAS  PubMed  Google Scholar 

  44. Khan AN, Gregorie CJ, Tomasi TB (2008) Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57:647–654. doi:10.1007/s00262-007-0402-4

    Article  CAS  PubMed  Google Scholar 

  45. Manning J, Indrova M, Lubyova B et al (2008) Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 123:218–227. doi:10.1111/j.1365-2567.2007.02689.x

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Song W, Tai YT, Tian Z, Hideshima T, Chauhan D, Nanjappa P, Exley MA, Anderson KC, Munshi NC (2011) HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 25:161–168. doi:10.1038/leu.2010.244

    Article  CAS  PubMed  Google Scholar 

  47. Frikeche J, Simon T, Brissot E, Gregoire M, Gaugler B, Mohty M (2012) Impact of valproic acid on dendritic cells function. Immunobiology 217:704–710. doi:10.1016/j.imbio.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  48. Frikeche J, Peric Z, Brissot E, Gregoire M, Gaugler B, Mohty M (2012) Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 40:783–791. doi:10.1016/j.exphem.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  49. Scuto A, Kirschbaum M, Buettner R, Kujawski M, Cermak JM, Atadja P, Jove R (2013) SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-kappaB/STAT3 complex to its promoter in malignant lymphoid cells. Cell Death Dis 4:e635. doi:10.1038/cddis.2013.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iyer AK, Liu J, Gallo RM, Kaplan MH, Brutkiewicz RR (2015) STAT3 promotes CD1d-mediated lipid antigen presentation by regulating a critical gene in glycosphingolipid biosynthesis. Immunology 146:444–455. doi:10.1111/imm.12521

    Article  CAS  PubMed  Google Scholar 

  51. Ribas A, Wolchok JD (2013) Combining cancer immunotherapy and targeted therapy. Curr Opin Immunol 25:291–296. doi:10.1016/j.coi.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/National Cancer Institute (NCI) 1R21CA162277, R21CA184469, and R21CA199544 grants to Tonya Webb and the American Association of Immunologists (AAI) Careers in Immunology Fellowship to Irina Tiper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya J. Webb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiper, I.V., Webb, T.J. Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother 65, 1411–1421 (2016). https://doi.org/10.1007/s00262-016-1900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1900-z

Keywords

Navigation