Skip to main content

Advertisement

Log in

Cryoimmunotherapy with local co-administration of ex vivo generated dendritic cells and CpG-ODN immune adjuvant, elicits a specific antitumor immunity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cryoablation is a low-invasive surgical procedure for management of malignant tumors. Tissue destruction is obtained by repeated deep freezing and thawing and results in coagulative necrosis and in apoptosis. This procedure induces the release of tumor-associated antigens and proinflammatory factors into the microenvironment. Local administration of immature dendritic cells (DCs) potentiates the immune response induced by cryoablation. To further augment the induction of long-lasting antitumor immunity, we investigated the clinical value of combining cryoimmunotherapy consisting of cryoablation and inoculation of immature DCs with administration of the immune adjuvant, CpG oligodeoxynucleotides. Injection of the murine Lewis lung carcinoma, D122-luc-5.5 that expresses the luciferase gene, results in spontaneous metastases, which can be easily monitored in vivo. The local tumor was treated by the combined treatment. The clinical outcome was assessed by monitoring tumor growth, metastasis in distant organs, overall survival, and protection from tumor recurrence. The nature of the induced T cell responses was analyzed. Combined cryoimmunotherapy results in reduced tumor growth, low metastasis and significantly prolonged survival. Moreover, this treatment induces antitumor memory that protected mice from rechallenge. The underlying suggested mechanisms are the generation of tumor-specific type 1 T cell responses, subsequent induction of cytotoxic T lymphocytes, and generation of systemic memory. Our data highlight the combined cryoimmunotherapy as a novel antitumor vaccine with promising preclinical results. Adjustment of this technique into practice will provide the therapeutic benefits of both, ablation of the primary tumor and induction of robust antitumor and antimetastatic immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsivian M, Polascik TJ (2010) Focal cryotherapy for prostate cancer. Curr Urol Rep 11:147–151

    Article  PubMed  Google Scholar 

  2. Rioja J, Tzortzis V, Mamoulakis C, Laguna MP (2010) Cryotherapy for renal tumors: current status and contemporary developments. Actas Urol Esp (English Edition) 34:309–317

    Article  CAS  Google Scholar 

  3. Ng KM, Chua TC, Saxena A, Zhao J, Chu F et al (2012) Two decades of experience with hepatic cryotherapy for advanced colorectal metastases. Ann Surg Oncol 19:1276–1283

    Article  PubMed  Google Scholar 

  4. Greenwald BD, Dumot JA, Abrams JA, Lightdale CJ, David DS et al (2010) Endoscopic spray cryotherapy for esophageal cancer: safety and efficacy. Gastrointest Endosc 71:686–693

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lee S-H, Choi W-J, Sung S-W, Kim Y-K, Kim C-H et al (2011) Endoscopic cryotherapy of lung and bronchial tumors: a systematic review. Korean J Intern Med 26:137–144

    Article  PubMed Central  PubMed  Google Scholar 

  6. Nishida H, Yamamoto N, Tanzawa Y, Tsuchiya H (2011) Cryoimmunology for malignant bone and soft-tissue tumors. Int J Clin Oncol 16:109–117

    Article  PubMed  Google Scholar 

  7. Sabel MS (2009) Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 58:1–11

    Article  CAS  PubMed  Google Scholar 

  8. Sidana A, Chowdhury WH, Fuchs EJ, Rodriguez R (2010) Cryoimmunotherapy in urologic oncology. Urology 75:1009–1014

    Article  PubMed  Google Scholar 

  9. Redondo P, del Olmo J, López-Diaz de Cerio A, Inoges S, Marquina M et al (2007) Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J Investig Dermatol 127:1673–1680

    CAS  PubMed  Google Scholar 

  10. Udagawa M, Kudo-Saito C, Hasegawa G, Yano K, Yamamoto A et al (2006) Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation. Clin Cancer Res 12:7465–7475

    Article  CAS  PubMed  Google Scholar 

  11. Hoffmann NE, Coad JE, Huot CS, Swanlund DJ, Bischof JC (2001) Investigation of the mechanism and the effect of cryoimmunology in the Copenhagen rat. Cryobiology 42:59–68

    Article  CAS  PubMed  Google Scholar 

  12. Shibata T, Suzuki K, Yamashita T, Takeichi N, Mark M, Hosokawa M, Kobayashi HAM (1998) Immunological analysis of enhanced spontaneous metastasis in WKA rats following cryosurgery. Anticancer Res 18(4A):2483–2486

    CAS  PubMed  Google Scholar 

  13. Machlenkin A, Goldberger O, Tirosh B, Paz A, Bar-haim E et al (2005) Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res 11:4955–4961

    Article  CAS  PubMed  Google Scholar 

  14. Krieg AM (2006) Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  CAS  PubMed  Google Scholar 

  15. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61:195–204

    Article  CAS  PubMed  Google Scholar 

  16. den Brok MHMGM, Sutmuller RPM, Nierkens S, Bennink EJ, Toonen LWJ et al (2006) Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res 66:7285–7292

    Article  Google Scholar 

  17. Eisenbach L, Hollander N, Greenfeld L, Yakor H, Segal S et al (1984) The differential expression of H-2 K versus H-2D antigens, distinguishing high- metastatic from low- metastatic clones, is correlated with the immunogenic properties of the tumor cells. Int J Cancer 34:567–573

    Article  CAS  PubMed  Google Scholar 

  18. Plaksin D, Gelber C, Feldman M, Eisenbach L (1988) Reversal of the metastatic phenotype in Lewis lung carcinoma cells after transfection with syngeneic H-2 Kb gene. Proc Natl Acad Sci USA 85:4463–4467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Porgador A, Feldman M, Eisenbach L (1989) H-2 Kb transfection of B16 melanoma cells results in reduced tumorigenicity and metastatic competence. J Immunogenet 16:291–303

    Article  CAS  PubMed  Google Scholar 

  20. Lutz MB, Kukutsch N, Ogilvie AL, Rössner S, Koch F et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92

    Article  CAS  PubMed  Google Scholar 

  21. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kosmaczewska A, Ciszak L, Potoczek S, Frydecka I (2008) The significance of Treg cells in defective tumor immunity. Arch Immunol Ther Exp (Warsz) 56:181–191

    Article  CAS  Google Scholar 

  23. Curiel T (2007) Tregs and rethinking cancer immunotherapy. J Clin Investig 117:1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  25. Den Brok MHMGM, Sutmuller RPM, van der Voort R, Bennink EJ, Figdor CG et al (2004) In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 64:4024–4029

    Article  Google Scholar 

  26. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  CAS  PubMed  Google Scholar 

  27. Krieg AM (2008) Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27:161–167

    Article  CAS  PubMed  Google Scholar 

  28. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:249–258

    Article  CAS  PubMed  Google Scholar 

  29. Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  CAS  PubMed  Google Scholar 

  30. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T et al (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234:199–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Parmiani G, De Filippo A, Novellino L, Castelli C (2007) Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 178:1975–1979

    CAS  PubMed  Google Scholar 

  33. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S-I et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nierkens S, den Brok MH, Roelofsen T, Wagenaars JA, Figdor CG et al (2009) Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice. PLoS ONE 4:e8368

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nierkens S, den Brok MH, Sutmuller RPM, Grauer OM, Bennink E et al (2008) In vivo colocalization of antigen and CpG [corrected] within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res 68:5390–5396

    Article  CAS  PubMed  Google Scholar 

  36. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Read S, Malmström V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC et al (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Investig 123:2447–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sasaki K, Pardee AD, Okada H, Storkus WJ (2008) IL-4 inhibits VLA-4 expression on Tc1 cells resulting in poor tumor infiltration and reduced therapy benefit. Eur J Immunol 38:2865–2873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fuertes MB, Kacha AK, Kline J, Woo S-R, Kranz DM et al (2011) Host type I IFN signals are required for antitumor CD8 + T cell responses through CD8{alpha} + dendritic cells. J Exp Med 208:2005–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Schmidt C (2007) Clinical setbacks for toll-like receptor 9 agonists in cancer. Nat Biotechnol 25:825–826

    Article  CAS  PubMed  Google Scholar 

  42. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393

    Article  CAS  PubMed  Google Scholar 

  43. Nierkens S, den Brok MH, Garcia Z, Togher S, Wagenaars J et al (2011) Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 71:6428–6437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Hagai Tavori for generating the D122-luc-5.5 clone. Israel Science Foundation, the Lewis Family Charitable Trust, and a research grant from the estate of John Hunter (to L. Eisenbach). L. Eisenbach is the incumbent of the George F. Duckwitz Chair of Cancer Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Eisenbach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alteber, Z., Azulay, M., Cafri, G. et al. Cryoimmunotherapy with local co-administration of ex vivo generated dendritic cells and CpG-ODN immune adjuvant, elicits a specific antitumor immunity. Cancer Immunol Immunother 63, 369–380 (2014). https://doi.org/10.1007/s00262-014-1520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1520-4

Keywords

Navigation