Skip to main content

Advertisement

Log in

Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purposes

To determine if liver-to-portal vein contrast ratio (LPC) correlates with liver function in patients with hepatitis B virus (HBV)-related cirrhosis on gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced MR imaging.

Methods

A total of 92 patients with normal (n = 20) or HBV-related cirrhotic livers graded by Child–Pugh class A (n = 50), B (n = 17) or C (n = 5) who underwent Gd-EOB-DTPA-enhanced 3Tesla MR imaging were retrospectively reviewed. LPC was defined as the signal intensity ratio of liver parenchyma to portal vein on hepatobiliary phase (HBP) acquired at 20 min, and it was compared between normal and cirrhotic livers. The correlation between LPC and hepatic function parameters at HBP after injection was quantitatively analyzed as well.

Results

LPC differed between normal and cirrhotic livers significantly (P < 0.001). LPC constantly and significantly decreased from normal to cirrhotic livers with Child–Pugh class C at HBP imaging (P < 0.001). Multiple regression analysis revealed that total bilirubin (P = 0.011), albumin (P < 0.001), and platelet count (P = 0.007) were independent predictors of LPC at HBP imaging. A receiver operating characteristic (ROC) curve analysis revealed that the optimal cutoff value for LPC to distinguish normal group from cirrhotic groups was 2.05 (AUC 0.98) with a sensitivity of 84.1% and a specificity of 100%.

Conclusion

The level of LPC on Gd-EOB-DTPA MR imaging can efficaciously indicate the severity of liver function in patients with HBV-related cirrhosis and was correlated with liver function parameters significantly. It might be used as an alternative imaging biomarker for assessing liver function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Beers BE, Grandin C, Pauwels S, et al. (1994) Gd-EOB-DTPA enhancement pattern of hepatocellular carcinomas in rats: comparison with Tc-99 m-IDA uptake. J Magn Reson Imaging 4(3):351–354

    Article  PubMed  Google Scholar 

  2. Weinmann HJ, Bauer H, Frenzel T, Muhler A, Ebert W (1996) Mechanism of hepatic uptake of gadoxetate disodium. Acad Radiol 3(Suppl 2):S232–S234

    Article  PubMed  Google Scholar 

  3. Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, et al. (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183(1):59–64. https://doi.org/10.1148/radiology.183.1.1549695

    Article  PubMed  CAS  Google Scholar 

  4. Reimer P, Rummeny EJ, Daldrup HE, et al. (1997) Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: preliminary results with dynamic MR imaging. Eur Radiol 7(2):275–280. https://doi.org/10.1007/s003300050150

    Article  PubMed  CAS  Google Scholar 

  5. Pascolo L, Cupelli F, Anelli PL, et al. (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257(3):746–752. https://doi.org/10.1006/bbrc.1999.0454

    Article  PubMed  CAS  Google Scholar 

  6. Muhler A, Heinzelmann I, Weinmann HJ (1994) Elimination of gadolinium-ethoxybenzyl-DTPA in a rat model of severely impaired liver and kidney excretory function. An experimental study in rats. Invest Radiol 29(2):213–216

    Article  PubMed  CAS  Google Scholar 

  7. Purysko AS, Remer EM, Veniero JC (2011) Focal liver lesion detection and characterization with GD-EOB-DTPA. Clin Radiol 66(7):673–684. https://doi.org/10.1016/j.crad.2011.01.014

    Article  PubMed  CAS  Google Scholar 

  8. Hammerstingl R, Huppertz A, Breuer J, et al. (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18(3):457–467. https://doi.org/10.1007/s00330-007-0716-9

    Article  PubMed  Google Scholar 

  9. Akai H, Matsuda I, Kiryu S, et al. (2012) Fate of hypointense lesions on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Eur J Radiol 81(11):2973–2977. https://doi.org/10.1016/j.ejrad.2012.01.007

    Article  PubMed  Google Scholar 

  10. Kobayashi S, Matsui O, Gabata T, et al. (2012) Relationship between signal intensity on hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MR imaging and prognosis of borderline lesions of hepatocellular carcinoma. Eur J Radiol 81(11):3002–3009. https://doi.org/10.1016/j.ejrad.2012.03.029

    Article  PubMed  Google Scholar 

  11. Campos JT, Sirlin CB, Choi JY (2012) Focal hepatic lesions in Gd-EOB-DTPA enhanced MRI: the atlas. Insights Imaging 3(5):451–474. https://doi.org/10.1007/s13244-012-0179-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tamada T, Ito K, Higaki A, et al. (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80(3):e311–e316. https://doi.org/10.1016/j.ejrad.2011.01.020

    Article  PubMed  Google Scholar 

  13. Fischer MA, Donati OF, Reiner CS, et al. (2012) Feasibility of semiquantitative liver perfusion assessment by ferucarbotran bolus injection in double-contrast hepatic MRI. J Magn Reson Imaging 36(1):168–176. https://doi.org/10.1002/jmri.23611

    Article  PubMed  Google Scholar 

  14. Verloh N, Haimerl M, Zeman F, et al. (2014) Assessing liver function by liver enhancement during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MRI at 3 Tesla. Eur Radiol 24(5):1013–1019. https://doi.org/10.1007/s00330-014-3108-y

    Article  PubMed  CAS  Google Scholar 

  15. Nishie A, Asayama Y, Ishigami K, et al. (2012) MR prediction of liver fibrosis using a liver-specific contrast agent: superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 36(3):664–671. https://doi.org/10.1002/jmri.23691

    Article  PubMed  Google Scholar 

  16. Verloh N, Haimerl M, Rennert J, et al. (2013) Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 Tesla. Eur J Radiol 82(10):1710–1715. https://doi.org/10.1016/j.ejrad.2013.05.033

    Article  PubMed  CAS  Google Scholar 

  17. Verloh N, Utpatel K, Haimerl M, et al. (2015) Liver fibrosis and Gd-EOB-DTPA-enhanced MRI: a histopathologic correlation. Sci Rep 5:15408. https://doi.org/10.1038/srep15408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee S, Choi D, Jeong WK (2016) Hepatic enhancement of Gd-EOB-DTPA-enhanced 3 Tesla MR imaging: assessing severity of liver cirrhosis. J Magn Reson Imaging 44(5):1339–1345. https://doi.org/10.1002/jmri.25288

    Article  PubMed  Google Scholar 

  19. Feier D, Balassy C, Bastati N, et al. (2013) Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 269(2):460–468. https://doi.org/10.1148/radiol.13122482

    Article  PubMed  Google Scholar 

  20. Takatsu Y, Kobayashi S, Miyati T, Shiozaki T (2016) A novel method for evaluating enhancement using gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid in the hepatobiliary phase of magnetic resonance imaging. Clin Imaging 40(6):1112–1117. https://doi.org/10.1016/j.clinimag.2016.07.001

    Article  PubMed  Google Scholar 

  21. Lee NK, Kim S, Kim GH, et al. (2012) Significance of the “delayed hyperintense portal vein sign” in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 36(3):678–685. https://doi.org/10.1002/jmri.23700

    Article  PubMed  Google Scholar 

  22. Tamada T, Ito K, Sone T, et al. (2011) Gd-EOB-DTPA enhanced MR imaging: evaluation of biliary and renal excretion in normal and cirrhotic livers. Eur J Radiol 80(3):e207–e211. https://doi.org/10.1016/j.ejrad.2010.08.033

    Article  PubMed  Google Scholar 

  23. Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi–gadoxetic acid-enhanced MR imaging. Radiology 256(3):767–773. https://doi.org/10.1148/radiol.10092065

    Article  PubMed  Google Scholar 

  24. Tsuboyama T, Onishi H, Kim T, et al. (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging–correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255(3):824–833. https://doi.org/10.1148/radiol.10091557

    Article  PubMed  Google Scholar 

  25. van Montfoort JE, Stieger B, Meijer DK, et al. (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290(1):153–157

    PubMed  Google Scholar 

  26. Geier A, Kim SK, Gerloff T, et al. (2002) Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride. J Hepatol 37(2):198–205

    Article  PubMed  CAS  Google Scholar 

  27. Geier A, Dietrich CG, Voigt S, et al. (2003) Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38(2):345–354. https://doi.org/10.1053/jhep.2003.50317

    Article  PubMed  CAS  Google Scholar 

  28. Planchamp C, Montet X, Frossard JL, et al. (2005) Magnetic resonance imaging with hepatospecific contrast agents in cirrhotic rat livers. Invest Radiol 40(4):187–194

    Article  PubMed  CAS  Google Scholar 

  29. Tschirch FT, Struwe A, Petrowsky H, et al. (2008) Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma. Eur Radiol 18(8):1577–1586. https://doi.org/10.1007/s00330-008-0929-6

    Article  PubMed  Google Scholar 

  30. Takao H, Akai H, Tajima T, et al. (2011) MR imaging of the biliary tract with Gd-EOB-DTPA: effect of liver function on signal intensity. Eur J Radiol 77(2):325–329. https://doi.org/10.1016/j.ejrad.2009.08.008

    Article  PubMed  Google Scholar 

  31. Jiao D, Jin JM (1999) Fast frequency-sweep analysis of RF coils for MRI. IEEE Trans Biomed Eng 46(11):1387–1390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No funding was received in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required. This retrospective review of existing data was approved by the institutional review board of The First Affiliated Hospital of Soochow University, and written informed consent was waived for all patients.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, X., Miao, Y. et al. Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla. Abdom Radiol 43, 2262–2269 (2018). https://doi.org/10.1007/s00261-018-1462-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1462-y

Keywords

Navigation