Skip to main content

Advertisement

Log in

Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine (123I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac 123I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by 123I-mIBG scintigraphy, in patients with HF.

Methods and results

We studied 180 HF patients (age = 66.1 ± 10.5 years [yrs]), left ventricular ejection fraction (LVEF = 30.6 ± 6.3 %) undergoing cardiac 123I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age = 77.7 ± 4.0 year), 67 patients aged 62–72 years (age = 67.9 ± 3.2 years) and 60 patients aged ≤61 year (age = 53.9 ± 5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p < 0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age.

Conclusions

Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by 123I-mIBG imaging. This finding suggests that cardiac 123I-mIBG uptake in patients with HF might be affected by patient age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  2. Lymperopoulos A, Rengo G, Koch WJ. The adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res Circ Res. 2013;113:739–53.

    Article  CAS  PubMed  Google Scholar 

  3. Rengo G, Lymperopoulos A, Koch WJ. Future g protein-coupled receptor targets for treatment of heart failure. Curr Treat Options Cardiovasc Med. 2009;11:328–38.

    Article  PubMed  Google Scholar 

  4. Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease. Physiologic basis and prognostic implications. J Am Coll Cardiol. 2008;51:1725–33.

    Article  PubMed  Google Scholar 

  5. Latini R, Masson S, Anand I, Salio M, Hester A, Judd D, et al. The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur Heart J. 2004;25:292–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tsutamoto T, Nishiyama K, Sakai H, Tanaka T, Fujii M, Yamamoto T, et al. Transcardiac increase in norepinephrine and prognosis in patients with chronic heart failure. Eur J Heart Fail. 2008;10:1208–14.

    Article  CAS  PubMed  Google Scholar 

  7. Fauchier L, Babuty D, Cosnay P, Fauchier JP. Prognostic value of heart rate variability for sudden death and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1999;33:1203–7.

    Article  CAS  PubMed  Google Scholar 

  8. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565–70.

    Article  PubMed  Google Scholar 

  9. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    Article  CAS  PubMed  Google Scholar 

  10. Carrio I. Cardiac neurotransmission imaging. J Nucl Med. 2001;42:1062–76.

    CAS  PubMed  Google Scholar 

  11. Yamashina S, Yamazaki J. Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging. 2007;34:939–50.

    Article  PubMed  Google Scholar 

  12. Perrone-Filardi P, Paolillo S, Dellegrottaglie S, Gargiulo P, Savarese G, Marciano C, et al. Assessment of cardiac sympathetic activity by MIBG imaging in patients with heart failure: a clinical appraisal. Heart. 2011;97:1828–33.

    Article  PubMed  Google Scholar 

  13. Agostini D, Verberne HJ, Hamon M, Jacobson AF, Manrique AQ. Cardiac 123I-MIBG scintigraphy in heart failure. J Nucl Med Mol Imaging. 2008;52:369–77.

    CAS  Google Scholar 

  14. Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med. 2011;41:374–87.

    Article  PubMed  Google Scholar 

  15. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 metaiodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  16. Docherty JR. Age-related changes in adrenergic neuroeffector transmission. Auton Neurosci. 2002;96:8–12.

    Article  CAS  PubMed  Google Scholar 

  17. Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014;4:396.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Esler MD, Turner AG, Kaye DM, Thompson JM, Kingwell BA, Morris M, et al. Aging effects on human sympathetic neuronal function. Am J Physiol. 1995;268:R278–85.

    CAS  PubMed  Google Scholar 

  19. Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age. Nature. 1976;261:333–5.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari AU. Modifications of the cardiovascular system with aging. Am J Geriatr Cardiol. 2002;11:30–3.

    Article  PubMed  Google Scholar 

  21. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and b-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.

    Article  CAS  PubMed  Google Scholar 

  22. Davies CH, Ferrara N, Harding SE. Beta-adrenoceptor function changes with age of subject in myocytes from non-failing human ventricle. Cardiovasc Res. 1996;31:152–6.

    CAS  PubMed  Google Scholar 

  23. Estorch M, Carrio I, Berna L, Lopez-Pousa J, Torres G. Myocardial iodine-labeled metaiodobenzylguanidine 123 uptake relates to age. J Nucl Cardiol. 1995;2:126–32.

    CAS  PubMed  Google Scholar 

  24. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36:969–74.

    CAS  PubMed  Google Scholar 

  25. Chen W, Botvinick EH, Alavi A, Zhang Y, Yang S, Perini R, et al. Age-related decrease in cardiopulmonary adrenergic neuronal function in children as assessed by I-123 metaiodobenzylguanidine imaging. J Nucl Cardiol. 2008;15:73–9.

    Article  PubMed  Google Scholar 

  26. Jacobson AF, Chen J, Verdes L, Folks RD, Manatunga DN, Garcia EV. Impact of age on myocardial uptake of 123I-mIBG in older adult subjects without coronary heart disease. J Nucl Cardiol. 2013;20:406–14.

    Article  PubMed  Google Scholar 

  27. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7:79–108.

    Article  PubMed  Google Scholar 

  28. Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, et al. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care. 2013;36:2395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pellegrino T, Petretta M, De Luca S, Paolillo S, Boemio A, Carotenuto R, et al. Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging. 2013;40:1549–57.

    Article  CAS  PubMed  Google Scholar 

  30. Royston P, Sauerbrei W. Multivariate model building. A pragmatic approach to regression analysis based on fractional polynomials for modeling continuous variables. Chichester: Wiley; 2008.

    Google Scholar 

  31. Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28:964–74.

    Article  CAS  PubMed  Google Scholar 

  32. Royston P, Sauerbrei W. Bootstrap assessment of the stability of multivariable models. Stata J. 2009;9:547–70.

    Google Scholar 

  33. Shorrocks AF. Decomposition procedures for distributional analysis: a unified framework based on the Shapley value. J Econ Inequal. 2013;11:99–126.

    Article  Google Scholar 

  34. Kutner M, Nachtsheim C, Neter J. MP. Applied linear regression models-revised edition with student CD. 4th ed. NY: McGraw Hill/Irwin; 2004.

    Google Scholar 

  35. Rengo F, Leosco D, Iacovoni A, Rengo G, Golino L, Borgia F, et al. Epidemiology and risk factors for heart failure in the elderly. Ital Heart J. 2004;5 Suppl 10:9S–16.

    PubMed  Google Scholar 

  36. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  37. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. JACC. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  38. Chizzola PR, Gonçalves de Freitas HF, Mansur JA, Meneghetti JC, Bocchi EA. The effect of beta-adrenergic receptor antagonism in cardiac sympathetic neuronal remodeling in patients with heart failure. Int J Cardiol. 2006;106:29–34.

    Article  PubMed  Google Scholar 

  39. Sakamaki F, Satoh T, Nagaya N, Kyotani S, Nakanishi N, Ishida Y. Abnormality of left ventricular sympathetic nervous function assessed by (123)I-metaiodobenzylguanidine imaging in patients with COPD. Chest. 1999;116:1575–81.

    Article  CAS  PubMed  Google Scholar 

  40. Steinhagen-Thiessen E, Bramlage P, Lösch C, Hauner H, Schunkert H, Vogt A, et al. Dyslipidemia in primary care – prevalence, recognition, treatment and control: data from the German Metabolic and Cardiovascular Risk Project (GEMCAS). Cardiovasc Diabetol. 2008;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakajima K, Nakata T, Yamada T, Yamashina S, Momose M, Kasama S, et al. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using 123I-metaiodobenzylguanidine imaging. Eur J Nucl Med Mol Imaging. 2014;41:1673.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Verschure DO, Veltman CE, Manrique A, Somsen GA, Koutelou M, Katsikis A, et al. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with chronic heart failure? Results of a pooled individual patient data meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15:996–1003.

    Article  PubMed  Google Scholar 

  43. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772–84.

    Article  PubMed  Google Scholar 

  44. Chen J, Garcia EV, Galt JR, Folks RD, Carrio I. Optimized acquisition and processing protocols for I-123 cardiac SPECT imaging. J Nucl Cardiol. 2006;13:251–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Leosco.

Ethics declarations

Funding

No funding to report.

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

The first two authors equally contributed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengo, G., Pagano, G., Vitale, D.F. et al. Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure. Eur J Nucl Med Mol Imaging 43, 2392–2400 (2016). https://doi.org/10.1007/s00259-016-3432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3432-3

Keywords

Navigation