Skip to main content
Log in

How do we establish cardiac sympathetic nervous system imaging with 123I-mIBG in clinical practice? Perspectives and lessons from Japan and the US

  • International Corner
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac denervation is associated with progressive left ventricular (LV) dysfunction, ventricular arrhythmias, and sudden cardiac death (SCD) in heart failure (HF). In this regard, it is important to evaluate cardiac-specific sympathetic nervous system (SNS) function. The radiotracer Iodine-123 meta-iodobenzylguanidine (123I-mIBG) can noninvasively evaluate pre-synaptic SNS function. Recent multicenter trials have shown 123I-mIBG to have strong predictive value for fatal arrhythmias and cardiac death in HF. 123I-mIBG was initially developed in the USA in the 1970s. In 1992, the Japanese Ministry of Health and Labour approved 123I-mIBG for the assessment of cardiac function. Following approval, the Japanese nuclear cardiology community developed 123I-mIBG imaging services in various medical centers. Japanese groups have been trying to establish the clinical utility of 123I-mIBG and standardize parameters for data acquisition and image analysis. The US Food and Drug Administration (FDA) has approved clinical use of 123I-mIBG for cardiac and non-cardiac imaging. However, clinical use of 123I-mIBG in the US has been very limited. The number of 123I-mIBG studies in Japan has also been limited. There are similarities and differences between the two countries. To establish the clinical utility of 123I-mIBG in both countries, it is important to characterize the situations of 123I-mIBG in each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

SNS:

Sympathetic nervous system

123I-mIBG:

Iodine-123 meta-iodobenzylguanidine

SCD:

Sudden cardiac death

FDA:

Food and Drug Administration

JMHLW:

Japanese Ministry of Health, Labour and Welfare

SPECT:

Single photon emission computed tomography

HF:

Heart failure

HMR:

Heart-to-mediastinum ratio

ICD:

Implantable carioverter defibrillator

References

  1. Nakajima K, Scholte AJHA, Nakata T, Dimitriu-Leen AC, Chikamori T, Vitola JV, et al. Cardiac sympathetic nervous system imaging with 123-I-meta-iodobenzylguanidine: perspective from Japan and Europe. J Nucl Cardiol. 2017;24:952–60.

    Article  PubMed  Google Scholar 

  2. Nakajima K, Scholte AJHA, Nakata T, Dimiriu-Leen AC, Chikamori T, Vitola JV, et al. Cardiac Sympathetic Nervous System Imaging with 123I-meta-iodobenzylguanidine. Ann Nucl Cardiol. 2017;3:4–11.

    Article  Google Scholar 

  3. Raffel DM, Wieland DM. Development of mIBG as a cardiac innervation imaging agent. J Am Coll Cardiol Imaging. 2010;3:111–6.

    Article  Google Scholar 

  4. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu J, Clinthorne NH, Otto CA, Swanson DP, Beierwaltes WH. Myocardial imaging with a Radioiodinated norepinephrine storage analog. J Nucl Med. 1981;22:22–31.

    CAS  PubMed  Google Scholar 

  5. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, Beierwaltes WH. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med. 1981;22:129–32.

    CAS  PubMed  Google Scholar 

  6. Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH. Inverse relationship between cardiac accumulation of meta-[131I] iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med. 1983;24:1127–34.

    CAS  PubMed  Google Scholar 

  7. Nakajo M, Shimabukuro K, Yoshimura H, Yonekura R, Nakabeppu Y, Tanoue P, Shinohara S. Iodine-131 metaiodobenzylguanidine intra- and extravesicular accumulation in the rat heart. J Nucl Med. 1986;27:84–9.

    CAS  PubMed  Google Scholar 

  8. Sisson JC, Lynch JJ, Johnson J, Jaques S Jr, Wu D, Bolgos G, Lucchesi BR, Wieland DM. Scintigraphic detection of regional disruption of adrenergic neurons in the heart. Am Heart J. 1988;116:67–76.

    Article  CAS  PubMed  Google Scholar 

  9. Hirosawa K, Tanaka T, Hisada K, Bunko, H. Clinical evaluation of 123I-MIBG for assessment of sympathetic nervous system in the heart (multi-center clinical trial). Kaku Igaku (Jpn J Nucl Med) 1991; 28: 461–476 (in Japanese, Abstract in English)

  10. Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of 123I-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J. 1990;119:1329–37.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda H, Arano Y, Okazawa H, Okamura T, Mizumura S, Yokoyama K. The 33rd report on survey of the adverse reaction to radiopharmaceuticals (The 36th survey in 2010). Kakuigaku (Jpn J Nucl Med) 2012; 49: 1-14 (Abstract in Japanese)}.

  12. Nakajima K, Nakata T. Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med. 2015;56:11S–9S.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: Supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    Article  CAS  PubMed  Google Scholar 

  14. Kammerling JJ, Green FJ, Watanabe AM, Inoue H, Barber MJ, Henry DP, Zipes DP. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation. 1987;76:383–93.

    Article  CAS  PubMed  Google Scholar 

  15. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellmann HN, Zipes DP. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation. 1988;78:1008–19.

    Article  CAS  PubMed  Google Scholar 

  16. Dae MW, O’Connell JW, Botvinick EH, Ahearn T, Yee E, Huberty JP, Mori H, Chin MC, Hattner RS, Herre JM, Munoz L. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989;79:634–44.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshioka K, Gao D, Chin M, Stillson C, Penades E, Lesh M, O’Connell W, Dae M. Heterogeneous sympathetic innervation influences local myocardial repolarization in normally perfused rabbit hearts. Circulation. 2000;101:1060–6.

    Article  CAS  PubMed  Google Scholar 

  18. Takatsu H, Scheffel U, Fujiwara H. Sympathetic tone assessed by washout of iodine 125-labeled metaiodobenzylguanidine from the murine left ventricle–influence of immobilization stress and inhibition of the renin-angiotensin system. J Nucl Cardiol. 1995;2:507–12.

    Article  CAS  PubMed  Google Scholar 

  19. Matsunari I, Bunko H, Taki J, Nakajima K, Muramori A, Kuji I, Miyauchi T, Tonami N, Hisada K. Regional uptake of iodine-125-metaiodobenzylguanidine in the rat heart. Eur J Nucl Med. 1993;20:1104–7.

    Article  CAS  PubMed  Google Scholar 

  20. Takatsu H, Uno Y, Fujiwara H. Modulation of left ventricular iodine-125-MIBG accumulation in cardiomyopathic Syrian hamsters using the renin-angiotensin system. J Nucl Med. 1995;36:1055–61.

    CAS  PubMed  Google Scholar 

  21. Nomura Y, Matsunari I, Takamatsu H, Murakami Y, Matsuya T, Taki J, Nakajima K, Nekolla SG, Chen WP, Kajinami K. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake. Eur J Nucl Med Mol Imaging. 2006;33:871–8.

    Article  PubMed  Google Scholar 

  22. Nohara R, Kambara H, Okuda K, Ono S, Tamaki N, Konishi J, Kawai C. Effects of cardiac sympathetic nervous system on the stunned myocardium experimental study with 123I-metaiodobenzylguanidine. Jpn Circ J. 1991;55:893–9.

    Article  CAS  PubMed  Google Scholar 

  23. Nishimura T, Oka H, Sago M, Matsuo T, Uehara T, Noda H, Takano H. Serial assessment of denervated but viable myocardium following acute myocardial infarction in dogs using iodine-123 metaiodobenzylguanidine and thallium-201 chloride myocardial single photon emission tomography. Eur J Nucl Med. 1992;19:25–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wakasugi S, Inoue M, Tazawa S. Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med. 1995;36:2069–74.

    CAS  PubMed  Google Scholar 

  25. Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N. Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. J Nucl Med. 1992;33:208–14.

    CAS  PubMed  Google Scholar 

  26. Igawa A, Nozawa T, Yoshida N, Fujii N, Kato B, Inoue M, Tazawa S, Yamada Y, Asanoi H, Inoue H. Effects of the angiotensin-converting enzyme inhibitor enalapril on sympathetic neuronal function and beta-adrenergic desensitization in heart failure after myocardial infarction in rats. Jpn Heart J. 2002;43:675–88.

    Article  CAS  PubMed  Google Scholar 

  27. Wakabayashi Y, Kurata C, Mikami T, Shouda S, Okayama K, Tawarahara K. Effects of cilazapril and verapamil on myocardial iodine-125-metaiodobenzylguanidine accumulation in cardiomyopathic BIO 53.58 hamsters. J Nucl Med. 1997;38:1540–5.

    CAS  PubMed  Google Scholar 

  28. Inoue A, Yamashina S, Yamazaki J. The effect of beta-blocker on hamster model BIO 53.58 with dilated cardiomyopathy determined using 123I-MIBG myocardial scintigraphy. Ann Nucl Med. 2003;17:677–83.

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe K, Takahashi T, Nakazawa M, Wahed MI, Fuse K, Tanabe N, Kodama M, Aizawa Y, Ashino H, Tazawa S. Effects of carvedilol on cardiac function and cardiac adrenergic neuronal damage in rats with dilated cardiomyopathy. J Nucl Med. 2002;43:531–5.

    CAS  PubMed  Google Scholar 

  30. Tachikawa H, Kodama M, Watanabe K, Takahashi T, Ma M, Kashimura T, Ito M, Hirono S, Okura Y, Kato K, Hanawa H, Aizawa Y. Amiodarone improves cardiac sympathetic nerve function to hold norepinephrine in the heart, prevents left ventricular remodeling, and improves cardiac function in rat dilated cardiomyopathy. Circulation. 2005;111:894–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kiyono Y, Iida Y, Kawashima H, Tamaki N, Nishimura H, Saji H. Regional alterations of myocardial norepinephrine transporter density in streptozotocin-induced diabetic rats: implications for heterogeneous cardiac accumulation of MIBG in diabetes. Eur J Nucl Med. 2001;28:894–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kurata C, Okayama K, Wakabayashi Y, Shouda S, Mikami T, Tawarahara K, Sugiyama T. Cardiac sympathetic neuropathy and effects of aldose reductase inhibitor in streptozotocin-induced diabetic rats. J Nucl Med. 1997;38:1677–80.

    CAS  PubMed  Google Scholar 

  33. Kiyono Y, Iida Y, Kawashima H, Ogawa M, Tamaki N, Nishimura H, Saji H. Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. Eur J Nucl Med Mol Imaging. 2002;29:999–1005.

    Article  CAS  PubMed  Google Scholar 

  34. Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, Burt RW, Wellman HN, Zipes DP. Regional sympathetic denervation after MI in humans detected noninvasively using I-123-MIBG. J Am Coll Cardiol. 1989;14:1519–26.

    Article  CAS  PubMed  Google Scholar 

  35. Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin JJ, Kulkarni P, Ugolini V, Akers MS, Hansen C, Buja LM, Parkey RW. Willerson, Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78:1192–9.

    Article  CAS  PubMed  Google Scholar 

  36. McGhie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, Buja LM, Durant-Reville M, Parkey RW, Willerson JT. Regional cardiac adrenergic function using I-123 MIBG SPECT imaging after acute myocardial infarction. Am J Cardiol. 1991;67:236–42.

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima K, Taki J, Tonami N, Hisada K. Decreased 123I-MIBG uptake and increased clearance in various cardiac diseases. Nucl Med Commun. 1994;15:317–23.

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, Konishi J. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36:969–74.

    CAS  PubMed  Google Scholar 

  39. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chanda H. Narula J, on behalf of the ADMIRE-HF investigators. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial Imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  40. http://medlibrary.org/lib/rx/meds/adreview-1/. Accessed 5 Oct, 18 (FDA Web Reference)

  41. Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  42. Gerson MC, Craft LL, McGuire N, Suresh DP, Abraham WT, Wagoner LE. Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol. 2002;9:608–15.

    Article  PubMed  Google Scholar 

  43. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23:606–39.

    Article  PubMed  Google Scholar 

  44. Soman P, Travin MI, Gerson M, Cullom SJ, Thompson R. I-123 MIBG cardiac imaging. J Nucl Cardiol. 2015;22:677–85.

    Article  PubMed  Google Scholar 

  45. Nakajima K. Normal values for nuclear cardiology: Japanese databases for myocardial perfusion, fatty acid and sympathetic imaging and left ventricular function. Ann Nucl Med. 2010;24:125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nakajima K, Okuda K, Yoshimura M, Matsuo S, Wakabayashi H, Imanishi Y, Kinuya S. Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. J Nucl Cardiol. 2014;21:970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Verschure DO, Poel E, Nakajima K, Okuda K, van Eck-Smit BLF, Somsen GA, Verberne HJ. A European myocardial 123I-mIBG cross-calibration phantom study. J Nucl Cardiol 2017; https://doi.org/10.1007/s12350-017-0782-6. (Epub ahead of print)

  48. Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Ann Nucl Med. 2016;30:188–99.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Okuda K, Nakajima K, Hosoya T, Ishikawa T, Konishi T, Matsubara K, Matsuo S, Kinuya S. Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol. 2011;18:82–9.

    Article  PubMed  Google Scholar 

  50. Nakajima K, Nakata T, Matsuo S, Jacobson AF. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur Heart J Cardiovasc Imaging. 2016;17:1138–45.

    Article  PubMed  Google Scholar 

  51. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, MD, Matsui T, Matsuo S, Travin MI, Jacobson AF. A pooled analysis of multicenter cohort studies of I-123-mIBG cardiac sympathetic innervation imaging for assessment of long-term prognosis in chronic heart failure. J Am Coll Cardiol Imaging 2013; 6: 772-784.

  52. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16:113–21.

    Article  PubMed  Google Scholar 

  53. Chen J, Folks RD, Verdes L, Manatunga DN, Jacobson AF, Garcia EV. Quantitative I-123 mIBG SPECT in differentiating abnormal and normal mIBG myocardial uptake. J Nucl Cardiol. 2012;19:92–9.

    Article  PubMed  Google Scholar 

  54. Clements IP, Garcia EV, Chen J, Folks RD, Butler J, Jacobson AF. Quantitative iodine-123-metaiodobenzylguanidine (MIBG) SPECT imaging in heart failure with left ventricular systolic dysfunction: Development and validation of automated procedures in conjunction with technetium-99m tetrofosmin myocardial perfusion SPECT. J Nucl Cardiol. 2016;23:425–35.

    Article  PubMed  Google Scholar 

  55. Gerson MC, McGuire N, Wagoner LE. Sympathetic nervous system function as measured by I-123 metaiodobenzylguanidine predicts transplant-free survival in heart failure patients with dilated cardiomyopathy. J Card Fail. 2003;9:384–91.

    Article  PubMed  Google Scholar 

  56. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  57. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    Article  PubMed  Google Scholar 

  58. Hohnloser SH, Connolly SJ, Kuck KH, Dorian P, Fain E, Hampton JR, et al. The defibrillator in acute myocardial infarction trial (DINAMIT): study protocol. Am Heart J. 2000;140:735–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kadish A, Dyer A, Daubert JP, Quigg R, Estes NA, Anderson KP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–8.

    Article  CAS  PubMed  Google Scholar 

  60. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  61. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al., writing on behalf of the 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult Writing Committee. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2009; 53: 1343-1382.

  62. Travin MI. Feng DaLi, Taub CC. Novel imaging approaches for predicting arrhythmic risk. Circ Cardiovasc Imaging. 2015;8:e003019. https://doi.org/10.1161/CIRCIMAGING.115.003019.

    Article  PubMed  Google Scholar 

  63. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, Ng K, Marcano V, Heller S, Fisher JD, Travin MI. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10:121–31.

    Article  PubMed  Google Scholar 

  64. Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, Shimoshige S, Uno K, Tsuchihashi K, Shimamoto K. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med. 2008;49:225–33.

    Article  PubMed  Google Scholar 

  65. Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of 123I-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J. 1990;119:1329–37.

    Article  CAS  PubMed  Google Scholar 

  66. Akashi YJ, Nakazawa K, Sakakibara M, Miyake F, Musha H, Sasaka K. 123I-MIBG myocardial scintigraphy in patients with “takotsubo” cardiomyopathy. J Nucl Med. 2004;45:1121–7.

    PubMed  Google Scholar 

  67. Takano H, Nakamura T, Satou T, Umetani K, Watanabe A, Ishihara T, Mochizuki S, Kimura H, Honma H, Ikeda Y, et al. Regional myocardial sympathetic dysinnervation in patients with coronary vasospasm. Am J Cardiol. 1995;75:324–9.

    Article  CAS  PubMed  Google Scholar 

  68. Sakata K, Yoshida H, Hoshino T, Kurata C. Sympathetic nerve activity in the spasm-induced coronary artery region is associated with disease activity of vasospastic angina. J Am Coll Cardiol. 1996;28:460–4.

    Article  CAS  PubMed  Google Scholar 

  69. Miyanaga H, Yoneyama S, Kamitani T, Kawasaki S, Takahashi T, Kunishige H. Clinical usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction. Jpn Circ J. 1995;59:599–607.

    Article  CAS  PubMed  Google Scholar 

  70. Otsuka N, Ohi M, Chin K, Kita H, Noguchi T, Hata T, Nohara R, Hosokawa R, Fujita M, Kuno K. Assessment of cardiac sympathetic function with iodine-123-MIBG imaging in obstructive sleep apnea syndrome. J Nucl Med. 1997;38:567–72.

    CAS  PubMed  Google Scholar 

  71. https://www.theguardian.com/business/2010/jan/14/general-electric-amersham-healthcare. Accessed 30 Nov, 2017.

  72. Yoshinaga K, Tamaki N. Current status of nuclear cardiology in Japan: Ongoing efforts to improve clinical standards and to establish evidence. J Nucl Cardiol. 2015;22:690–9.

    Article  PubMed  Google Scholar 

  73. https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNMattersArticles/downloads/MM8328.pdf. Accessed 19 June, 2018.

  74. https://www.asnc.org/content.asp?contentid=213; https://www.asnc.org/Files/Advocacy/ASNC%20HOPPS%20Final%20payment%20chart%202018%20_11_8.pdf

  75. https://www.asnc.org/content.asp?contentid=213; https://www.asnc.org/Files/Advocacy/ASNC%20HOPPS%20Final%20payment%20chart%202016%2011_02_2015.pdf. Accessed 14 Dec, 2017

  76. https://www.medpagetoday.com/meetingcoverage/asnc/41980. Accessed 8 Dec, 2017.

  77. Kaiser Permanente foundations health plan of Washington: https://provider.ghc.org/all-sites/clinical/criteria/pdf/imibg.pdf. Accessed 8 Dec, 2017

  78. Blue Cross Blue Shield North Carolina: https://www.bcbsnc.com/assets/services/public/pdfs/medicalpolicy/myocardial_sympathetic_innervation_imaging.pdf. Accessed 8 Dec, 2017

  79. Sciammarella MG, Gerson M, Buxton AE, Bartley SC, Doukky R, Merlino DA, Tandon S, Thompson R, Travin MI. ASNC/SNMMI model coverage policy: Myocardial sympathetic innervation imaging: iodine-123 meta- iodobenzylguanidine (123I-mIBG). J Nucl Cardiol. 2015;22:804–11.

    Article  CAS  PubMed  Google Scholar 

  80. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35:535–46.

    Article  PubMed  Google Scholar 

  81. Japanese Circulation Society Joint Working Group. Guidelines for Clinical Use of Cardiac Nuclear Medicine (JCS 2010)—digest version. Circ J. 2012;76:761–7. https://doi.org/10.1253/circj.CJ-88-0019.

    Article  Google Scholar 

  82. Nakajima K, Yoshita M, Matsuo S, Taki J, Kinuya S. Iodine-123-MIBG sympathetic imaging in Lewy-body diseases and related movement disorders. Q J Nucl Med Mol Imaging. 2008;52:378–87.

    CAS  PubMed  Google Scholar 

  83. Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.

    Article  PubMed  Google Scholar 

  84. Treglia G, Cason E. Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging. 2012;22:111–7.

    Article  PubMed  Google Scholar 

  85. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.

    Article  PubMed  Google Scholar 

  86. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yoshita M, Arai H, Arai H, Arai T, Asada T, Fujishiro H, et al.: Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: A multicenter study. PLoS ONE. https://doi.org/10.1371/journal.pone.0120540.

  88. International Study to Determine if AdreView Heart Function Scan Can be Used to Identify Patients With Mild or Moderate Heart Failure (HF) That Benefit From Implanted Medical Device, ADMIRE-ICD, at Clin trials: https://www.clinicaltrials.gov/ct2/show/NCT02656329. Accessed 26 Dec, 2017.

  89. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9.

    Article  PubMed  Google Scholar 

  90. Sinusas AJ, Lazewatsky J, Brunetti J, Heller G, Srivastava A, Liu Y, Sparks R, Puretskiy A, Lin S, Crane P, Carson RE, Lee LV. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1–7.

    Article  CAS  Google Scholar 

  91. Tokuda Y, Sakakibara M, Yoshinaga K, Yamada S, Kamiya K, Asakawa N, Yoshitani T, Noguchi K, Manabe O, Tamaki N, Tsutsui H: Early therapeutic effects of adaptive servo-ventilation on cardiac sympathetic nervous activity function in patients with heart failure evaluated using a combination of 11C-HED PET and 123I-MIBG SPECT. J Nucl Cardiol 2018; https://doi.org/10.1007/s12350-017-1132-4 (in press)

  92. Vauchot F, Bouallegue B, Hedon C, Piot C, Roubille F, Mariano-Goulart D. Assessment of the area at risk after acute myocardial infarction: interests of 123I-MIBG SPECT compared with the angiographic APPROACH-score. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0644-7.

    Article  PubMed  Google Scholar 

  93. Nagamachi S, Fujita S, Nishii R, et al. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2006;13:34–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Natsue Ito, MT, for her support in preparing this manuscript. The authors thank Mariko Yamasaki, MA, for her administrative assistance. Prior to submission, the manuscript was reviewed by a North American English-language professional editor, Holly Beanlands; the authors thank her for critical reading of the manuscript.

Disclosure

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Yoshinaga MD, PhD, FACC, FASNC.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

This article is being jointly published in the Journal of Nuclear Cardiology and the Annals of Nuclear Cardiology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, M.I., Matsunari, I., Thomas, G.S. et al. How do we establish cardiac sympathetic nervous system imaging with 123I-mIBG in clinical practice? Perspectives and lessons from Japan and the US. J. Nucl. Cardiol. 26, 1434–1451 (2019). https://doi.org/10.1007/s12350-018-1394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1394-5

Key Words

Navigation