Skip to main content
Log in

Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous 18F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer.

Methods

Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent 18F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADCmin and ADCmean)], metabolic PET [maximum and mean standardized uptake value (SUVmax and SUVmean)], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUVmax, SUVmean, MTVSUV, and UVPSUV) and MRI-assisted VOI of prostate cancer (SUVmaxMRI, SUVmeanMRI, MTVMRI, and UVPMRI).

Results

The rates of prostate cancer-positive cases identified by MRI alone, 18F-FCH PET alone, and 18F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTVMRI showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVPMRI showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTVMRI and UVPMRI values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0.05).

Conclusion

Simultaneous 18F-FCH PET/MRI demonstrated a better diagnostic value for localized prostate cancer detection than each individual modality. MRI-assisted metabolic volumetric PET parameters (MTVMRI and UVPMRI) provided more accurate characterization of prostate cancer than conventional PET and MRI parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Ravizzini G, Turkbey B, Kurdziel K, Choyke PL. New horizons in prostate cancer imaging. Eur J Radiol 2009;70:212–26.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Takahashi N, Inoue T, Lee J, Yamaguchi T, Shizukuishi K. The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology 2007;72:226–33.

    Article  PubMed  Google Scholar 

  4. Ahmed HU, Kirkham A, Arya M, Illing R, Freeman A, Allen C, et al. Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol 2009;6:197–206.

    Article  PubMed  Google Scholar 

  5. Ghafoori M, Alavi M, Aliyari Ghasabeth M. MRI in prostate cancer. Iran Red Crescent Med J 2013;15:e16620.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jadvar H. Molecular imaging of prostate cancer: PET radiotracers. AJR Am J Roentgenol 2012;199:278–91.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jadvar H. Molecular imaging of prostate cancer with PET. J Nucl Med 2013;54:1685–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hong H, Zhang Y, Sun J, Cai W. Positron emission tomography imaging of prostate cancer. Amino Acids 2010;39:11–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 2013;38:305–14.

    Article  PubMed  Google Scholar 

  10. Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 2013;31:427–35.

    Article  CAS  PubMed  Google Scholar 

  11. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 2010;16:508–15.

    Article  PubMed  Google Scholar 

  12. Pace L, Nicolai E, Aiello M, Catalano OA, Salvatore M. Whole-body PET/MRI in oncology: current status and clinical applications. Clin Transl Imaging 2013;1:31–44.

    Article  Google Scholar 

  13. Lee SJ, Seo HJ, Cheon GJ, Kim JH, Kim EE, Kang KW, et al. Usefulness of integrated PET/MRI in head and neck cancer: a preliminary study. Nucl Med Mol Imaging 2014;48:98–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wetter A, Lipponer C, Nensa F, Beiderwellen K, Olbricht T, Rübben H, et al. Simultaneous 18F choline positron emission tomography/magnetic resonance imaging of the prostate: initial results. Invest Radiol 2013;48:256–62.

    Article  PubMed  Google Scholar 

  15. Wetter A, Lipponer C, Nensa F, Heusch P, Rübben H, Altenbernd JC, et al. Evaluation of the PET component of simultaneous [(18)F]choline PET/MRI in prostate cancer: comparison with [(18)F]choline PET/CT. Eur J Nucl Med Mol Imaging 2014;41:79–88.

    Article  CAS  PubMed  Google Scholar 

  16. Chang JH, Lim Joon D, Lee ST, Hiew CY, Esler S, Gong SJ, et al. Diffusion-weighted MRI, 11C-choline PET and 18F-fluorodeoxyglucose PET for predicting the Gleason score in prostate carcinoma. Eur Radiol 2014;24:715–22.

    Article  PubMed  Google Scholar 

  17. Wetter A, Lipponer C, Nensa F, Heusch P, Rübben H, Schlosser TW, et al. Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med 2014;28:405–10.

    Article  CAS  PubMed  Google Scholar 

  18. Yoneyama T, Tateishi U, Terauchi T, Inoue T. Correlation of metabolic tumor volume and 11C-choline uptake with the pathology of prostate cancer: evaluation by use of simultaneously recorded MR and PET images. Jpn J Radiol 2014;32:155–63.

    Article  CAS  PubMed  Google Scholar 

  19. Rahim MK, Kim SE, So H, Kim HJ, Cheon GJ, Lee ES, et al. Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl Med Mol Imaging 2014;48:1–15.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol 1986;31:229–34.

    Article  CAS  PubMed  Google Scholar 

  21. von Eyben FE, Kairemo K. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun 2014;35:221–30.

    Article  Google Scholar 

  22. Fuccio C, Rubello D, Castellucci P, Marzola MC, Fanti S. Choline PET/CT for prostate cancer: main clinical applications. Eur J Radiol 2011;80:e50–6.

    Article  PubMed  Google Scholar 

  23. Schwarzenböck S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics 2012;2:318–30.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lütje S, Boerman OC, van Rij CM, Sedelaar M, Helfrich W, Oyen WJ, et al. Prospects in radionuclide imaging of prostate cancer. Prostate 2012;72:1262–72.

    Article  PubMed  Google Scholar 

  25. Romesser PB, Lim R, Spratt DE, Setton J, Riaz N, Lok B, et al. The relative prognostic utility of standardized uptake value, gross tumor volume, and metabolic tumor volume in oropharyngeal cancer patients treated with platinum based concurrent chemoradiation with a pre-treatment [(18)F] fluorodeoxyglucose positron emission tomography scan. Oral Oncol 2014;50:802–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kim YI, Cheon GJ, Paeng JC, Cho JY, Kang KW, Chung JK, et al. Total lesion glycolysis as the best 18F-FDG PET/CT parameter in differentiating intermediate–high risk adrenal incidentaloma. Nucl Med Commun 2014;35:606–12.

    Article  CAS  PubMed  Google Scholar 

  27. Chung HH, Lee I, Kim HS, Kim JW, Park NH, Song YS, et al. Prognostic value of preoperative metabolic tumor volume measured by 18F-FDG PET/CT and MRI in patients with endometrial cancer. Gynecol Oncol 2013;130:446–51.

    Article  PubMed  Google Scholar 

  28. Byun BH, Noh WC, Lim I, Lee SS, Cho AR, Park JA, et al. A new method for apparent diffusion coefficient measurement using sequential (18)F-FDG PET and MRI: correlation with histological grade of invasive ductal carcinoma of the breast. Ann Nucl Med 2013;27:720–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Treiber U, et al. Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 2013;40:824–31.

    Article  PubMed  Google Scholar 

  30. Schwarzenböck SM, Kurth J, Gocke C, Kuhnt T, Hildebrandt G, Krause BJ. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer. Eur J Nucl Med Mol Imaging 2013;40:S28–35.

    Article  PubMed  Google Scholar 

  31. Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL, ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 2005;29:1228–42.

    Article  PubMed  Google Scholar 

  32. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33.

    Article  PubMed  Google Scholar 

  33. Kitajima K, Murphy RC, Nathan MA. Choline PET/CT for imaging prostate cancer: an update. Ann Nucl Med 2013;27:581–91.

    Article  CAS  PubMed  Google Scholar 

  34. Moul JW. Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur Urol 1999;35(5–6):399–407.

    Article  CAS  PubMed  Google Scholar 

  35. Breeuwsma AJ, Pruim J, Jongen MM, Suurmeijer AJ, Vaalburg W, Nijman RJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 2005;32:668–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI07C0001 & HI14C1072).

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gi Jeong Cheon or Jeong Yeon Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Yi., Cheon, G.J., Paeng, J.C. et al. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur J Nucl Med Mol Imaging 42, 1247–1256 (2015). https://doi.org/10.1007/s00259-015-3026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3026-5

Keywords

Navigation