Skip to main content
Log in

Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0,Tyr3-octreotide versus 68Ga-DOTA0-lanreotide

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the impact of 68Ga-labelled DOTA0-lanreotide (68Ga-DOTA-LAN) on the diagnostic assessment of neuroendocrine tumour (NET) patients with low to moderate uptake on planar somatostatin receptor (SSTR) scintigraphy or 68Ga-labelled DOTA0,Tyr3-octreotide (68Ga-DOTA-TOC) positron emission tomography (PET).

Methods

Fifty-three patients with histologically confirmed NET and clinical signs of progressive disease, who had not qualified for peptide receptor radionuclide therapy (PRRT) on planar SSTR scintigraphy or 68Ga-DOTA-TOC PET (n = 38) due to lack of tracer uptake, underwent 68Ga-DOTA-LAN PET to evaluate a treatment option with 90Y-labelled lanreotide according to the MAURITIUS trial. The included patients received 150 ± 30 MBq of each radiopharmaceutical intravenously. PET scans were acquired 60–90 min after intravenous bolus injection. Image results from both PET scans were compared head to head, focusing on the intensity of tracer uptake in terms of treatment decision. CT was used for morphologic correlation of tumour lesions. To further evaluate the binding affinities of each tracer, quantitative and qualitative values were calculated for target lesions.

Results

68Ga-DOTA-LAN and 68Ga-DOTA-TOC both showed equivalent findings in 24/38 patients when fused PET/CT images were interpreted. The sensitivity, specificity and accuracy of 68Ga-DOTA-LAN in comparison to CT were 0.63, 0.5 and 0.62 (n = 53; p < 0.0001) and for 68Ga-DOTA-TOC in comparison to CT 0.78, 0.5 and 0.76 (n = 38; p < 0.013), respectively. 68Ga-DOTA-TOC showed a significantly higher maximum standardized uptake value (SUVmax) regarding the primary tumour in 25 patients (p < 0.003) and regarding the liver in 30 patients (p < 0.009) compared to 68Ga-DOTA-LAN. Corresponding values of both PET scans for tumour and liver did not show any significant correlation. 68Ga-DOTA-TOC revealed more tumour sites than 68Ga-DOTA-LAN (106 vs 53). The tumour to background ratios for tumour and liver calculated from SUVmax measurements were significantly higher for 68Ga-DOTA-TOC than 68Ga-DOTA-LAN (p < 0.02).

Conclusion

68Ga-DOTA-TOC PET imaging is an established imaging procedure for accurate staging of NET patients. 68Ga-DOTA-LAN should only be considered as a PET tracer of second choice in patients with no pathologic tracer uptake on 68Ga-DOTA-TOC PET. In these patients, 68Ga-DOTA-LAN PET can provide valuable information when evaluating PRRT as the treatment option, as a broader spectrum of human SSTR subtypes can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strosberg JR, Cheema A, Kvols LK. A review of systemic and liver-directed therapies for metastatic neuroendocrine tumors of the gastroenteropancreatic tract. Cancer Control 2011;18:127–37.

    PubMed  Google Scholar 

  2. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 2001;28:836–46.

    Article  PubMed  CAS  Google Scholar 

  3. Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 2002;66:161–83.

    Article  PubMed  CAS  Google Scholar 

  4. Reubi JC. Clinical relevance of somatostatin receptor imaging. Eur J Endocrinol 1994;131:575–6.

    Article  PubMed  CAS  Google Scholar 

  5. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2010;17:R53–73.

    Article  PubMed  CAS  Google Scholar 

  6. Öberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 2010;139:742–53.

    Article  PubMed  Google Scholar 

  7. Virgolini IJ, Szilvasi I, Kurtaran A, Angelberger P, Raderer M, Havlik E, et al. Indium-111-DOTA-lanreotide: biodistribution, safety and radiation absorbed dose in tumor patients. J Nucl Med 1998;39:1928–36.

    PubMed  CAS  Google Scholar 

  8. Bombardieri E, Coliva A, Maccauro M, Seregni E, Orunesu E, Chiti A, et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 2010;54:3–15.

    PubMed  CAS  Google Scholar 

  9. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716–31.

    Article  PubMed  CAS  Google Scholar 

  10. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med 2006;36:228–47.

    Article  PubMed  Google Scholar 

  11. Kaltsas GA, Papadogias G, Makras P, Grossman AB. Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Endocr Relat Cancer 2005;12:683–99.

    Article  PubMed  CAS  Google Scholar 

  12. Virgolini I, Traub T, Leimer M, Novotny C, Pangerl T, Ofluoglu S, et al. New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy. Q J Nucl Med 2000;44:50–8.

    PubMed  CAS  Google Scholar 

  13. Gabriel M, Andergassen U, Putzer D, Kroiss A, Waitz D, Von Guggenberg E, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 2010;54:92–9.

    PubMed  CAS  Google Scholar 

  14. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  15. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  16. Gabriel M, Oberbauer A, Dobrozemsky G, Decristoforo C, Putzer D, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 2009;50:1427–34.

    Article  PubMed  CAS  Google Scholar 

  17. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  18. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34:1617–26.

    Article  PubMed  CAS  Google Scholar 

  19. Smith-Jones PM, Bischof C, Leimer M, Gludovacz D, Angelberger P, Pangerl T, et al. DOTA-lanreotide: a novel somatostatin analog for tumor diagnosis and therapy. Endocrinology 1999;140:5136–48.

    Article  PubMed  CAS  Google Scholar 

  20. Rodrigues M, Traub-Weidinger T, Leimer M, Li S, Andreae F, Angelberger P, et al. Value of 111In-DOTA-lanreotide and 111In-DOTA-DPhe1-Tyr3-octreotide in differentiated thyroid cancer: results of in vitro binding studies and in vivo comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 2005;32:1144–51.

    Article  PubMed  CAS  Google Scholar 

  21. Rodrigues M, Traub-Weidinger T, Li S, Ibi B, Virgolini I. Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2006;33:532–40.

    Article  PubMed  Google Scholar 

  22. Virgolini I, Traub T, Novotny C, Leimer M, Füger B, Li SR, et al. New trends in peptide receptor ligands. Q J Nucl Med 2001;45:153–9.

    PubMed  CAS  Google Scholar 

  23. Prasad V, Fetscher S, Baum RP. Changing role of somatostatin receptor targeted drugs in NET: nuclear medicine’s view. J Pharm Pharm Sci 2007;10:321s–37s.

    PubMed  CAS  Google Scholar 

  24. Traub-Weidinger T, Von Guggenberg E, Dobrozemsky G, Kendler D, Eisterer W, Bale R, et al. Preliminary experience with (68)Ga-DOTA-lanreotide positron emission tomography. Q J Nucl Med Mol Imaging 2010;54:52–60.

    PubMed  CAS  Google Scholar 

  25. Virgolini I, Britton K, Buscombe J, Moncayo R, Paganelli G, Riva P. 111In- and 90Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med 2002;32:148–55.

    Article  PubMed  Google Scholar 

  26. Breeman WA, de Jong M, de Blois E, Bernard BT, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 2005;32:478–85.

    Article  PubMed  CAS  Google Scholar 

  27. Strosberg J, Kvols L. Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol 2010;16:2963–70.

    Article  PubMed  CAS  Google Scholar 

  28. Savelli G, Lucignani G, Seregni E, Marchianò A, Serafini G, Aliberti G, et al. Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumours. Nucl Med Commun 2004;25:445–9.

    Article  PubMed  Google Scholar 

  29. Leimer M, Kurtaran A, Smith-Jones P, Raderer M, Havlik E, Angelberger P, et al. Response to treatment with yttrium 90-DOTA-lanreotide of a patient with metastatic gastrinoma. J Nucl Med 1998;39:2090–4.

    PubMed  CAS  Google Scholar 

  30. Traub T, Petkov V, Ofluoglu S, Pangert T, Raderer M, Fueger BJ, et al. 111In-DOTA-lanreotide scintigraphy in patients with tumors of the lung. J Nucl Med 2001;42:1309–15.

    PubMed  CAS  Google Scholar 

  31. Kwekkeboom DJ, de Herder W, van Ejick CH, Kam BL, van Essen M, Teunissen JJ, et al. Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2010;40:78–88.

    Article  PubMed  Google Scholar 

  32. Moncayo R. Reflections on the theory of “silver bullet” octreotide tracers: implications for ligand-receptor interactions in the age of peptides, heterodimers, receptor mosaics, truncated receptors, and multifractal analysis. EJNMMI Res 2011;1:9.

    Article  PubMed  Google Scholar 

  33. Fueger BJ, Hamilton G, Raderer M, Pangerl T, Traub T, Angelberger P, et al. Effects of chemotherapeutic agents on expression of somatostatin receptors in pancreatic tumor cells. J Nucl Med 2001;42:1856–62.

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Putzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putzer, D., Kroiss, A., Waitz, D. et al. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0,Tyr3-octreotide versus 68Ga-DOTA0-lanreotide. Eur J Nucl Med Mol Imaging 40, 364–372 (2013). https://doi.org/10.1007/s00259-012-2286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2286-6

Keywords

Navigation