Skip to main content

Advertisement

Log in

Triple-phase contrast-enhanced MRI for the prediction of preoperative chemotherapeutic effect in patients with osteosarcoma: comparison with 99mTc-MIBI scintigraphy

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

This study aims to determine whether 99mTc-MIBI scintigraphy and triple-phase contrast-enhanced magnetic resonance imaging (TCE-MRI) performed during and after preoperative chemotherapy have the power to predict final chemotherapeutic effects in patients with osteosarcoma (OS).

Materials and methods

Seventeen patients underwent 99mTc-MIBI scintigraphy and TCE-MRI before and after the middle and last courses of preoperative chemotherapy. As for 99mTc-MIBI scintigraphy, an uptake ratio (UR) and a reduction rate of UR (ΔURMIBI) were calculated. As for TCE-MRI, a ratio of contrast to background (CTB) was calculated in the whole tumor area (WA) at each phase on dynamic T1-weighted fat suppression images. Then a ratio of signal (R WA) was calculated by dividing CTB at triple-phase by CTB at pre-phase.

Results

Nine and eight patients showed good and poor response in histopathologic evaluation. The sensitivity, specificity, and accuracy for the prediction of histopathological chemotherapeutic effect was 44, 100, 69 % in R WA at the first phase, 100, 75, 88 % in ΔURMIBI after the middle course, 88, 100, 94 % in R WA at the first phase, and 100, 75, 88 % in ΔURMIBI after the last course of the preoperative chemotherapy, respectively.

Conclusion

Both 99mTc-MIBI scintigrapy and TCE-MRI can predict the tumor response in patients with OS after the completion of the preoperative chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hegyi M, Semsei AF, Jakab Z, Antal I, Kiss J, Szendroi M, et al. Good prognosis of localized osteosarcoma in young patients treated with limb-salvage surgery and chemotherapy. Pediatr Blood Cancer. 2011;57(3):415–22.

    Article  PubMed  Google Scholar 

  2. Bielack S, Jürgens H, Jundt G, Kevric M, Kühne T, Reichardt P, et al. Osteosarcoma: the COSS experience. Cancer Treat Res. 2009;152:289–308.

    Article  PubMed  Google Scholar 

  3. Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M. Bone tumors in adolescents and young adults. Curt Treat Options Oncol. 2008;9(1):67–80.

    Article  Google Scholar 

  4. Tsuchiya H, Tomita K, Mori Y, Asada N, Yamamoto N. Marginal excision for osteosarcoma with caffeine assisted chemotherapy. Clin Orthop Relat Res. 1999;358:27–35.

    PubMed  Google Scholar 

  5. Kimura H, Tsuchiya H, Shirai T, Nishida H, Hayashi K, Takeuchi A, et al. Caffeine-potentiated chemotherapy for metastatic osteosarcoma. J Orthop Sci. 2009;14(5):556–65.

    Article  CAS  PubMed  Google Scholar 

  6. Eftekhari F. Imaging assessment of osteosarcoma in childhood and adolescence: diagnosis, staging, and evaluating response to chemotherapy. Cancer Treat Res. 2009;152:33–62.

    Article  PubMed  Google Scholar 

  7. Fletcher BD. Response of osteosarcoma and Ewing sarcoma to chemotherapy: imaging evaluation. Am J Roentgenol. 1991;157(4):825–33.

    Article  CAS  Google Scholar 

  8. Caldarella C, Salsano M, Isgrò MA, Treglia G. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in assessing the response to neoadjuvant treatment in patients with osteosarcoma. Int J Mol Imaging. 2012;2012:870301.

    PubMed Central  PubMed  Google Scholar 

  9. Haioun C, Itti E, Rahmouni A, Brice P, Rain JD, Belhadj K, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106(4):1376–81.

    Article  CAS  PubMed  Google Scholar 

  10. Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, et al. [18F] FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2007;34(12):1915–24.

    Article  CAS  PubMed  Google Scholar 

  11. Taki J, Inaki A, Wakabayashi H, Sumiya H, Tsuchiya H, Zen Y, et al. Early prediction of histopathological tumor response to preoperative chemotherapy by Tc-99m MIBI imaging in bone and soft tissue sarcomas. Clin Nucl Med. 2010;35(3):154–9.

    Article  PubMed  Google Scholar 

  12. Wakabayashi H, Taki J, Inaki A, Sumiya H, Zen Y, Tsuchiya H, et al. Prognostic value of 99mTc-MIBI scintigraphy performed during middle course of the preoperative chemotherapy in patients with malignant bone and soft tissue tumors. Clin Nucl Med. 2012;37(1):1–8.

    Article  PubMed  Google Scholar 

  13. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.

    Article  CAS  PubMed  Google Scholar 

  14. van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC. Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. Am J Roentgenol. 1995;165(3):593–8.

    Article  Google Scholar 

  15. Fletcher BD, Hanna SL, Fairclough DL, Gronemeyer SA. Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology. 1992;184(1):243–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Huang W, Panicek DM, Schwartz LH, Koutcher JA. Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magn Reson Med. 2008;59(5):1183–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Reddick WE, Wang S, Xiong X, Glass JO, Wu S, Kaste SC, et al. Dynamic magnetic resonance imaging of regional contrast access as an additional prognostic factor in pediatric osteosarcoma. Cancer. 2001;91(12):2230–7.

    Article  CAS  PubMed  Google Scholar 

  18. Rosen G, Marcove RC, Huvos AG, Caparros BI, Lane JM, Nirenberg A, et al. Primary osteogenic sarcoma: eight-year experience with adjuvant chemotherapy. J Cancer Res Clin Oncol. 1983;106:55–67.

    Article  PubMed  Google Scholar 

  19. Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer. 2012;118(15):3776–85.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol. 2000;34(3):229–46.

    Article  CAS  PubMed  Google Scholar 

  21. Ongolo-Zogo P, Thiesse P, Sau J, Desuzinges C, Blay JY, Bonmartin A, et al. Assessment of osteosarcoma response to neoadjuvant chemotherapy: comparative usefulness of dynamic gadolinium-enhanced spin-echo magnetic resonance imaging and technetium-99m skeletal angioscintigraphy. Eur Radiol. 1999;9(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  22. Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, et al. Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol. 1995;50(6):384–90.

    Article  CAS  PubMed  Google Scholar 

  23. Magnan H, Chou AJ, Chou JF, Yeung HW, Healey JH, Meyers PA. Noninvasive imaging with thallium-201 scintigraphy may not correlate with survival in patients with osteosarcoma. Cancer. 2010;116(17):4147–51.

    Article  PubMed  Google Scholar 

  24. Hamada K, Tomita Y, Inoue A, Fujimoto T, Hashimoto N, Myoui A, et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med. 2009;23(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  25. Moore SG, Bisset 3rd GS, Siegel MJ, Donaldson JS. Pediatric musculoskeletal MR imaging. Radiology. 1991;179(2):345–60.

    Article  CAS  PubMed  Google Scholar 

  26. Taki J, Higuchi T, Sumiya H, Tsuchiya H, Minato H, Tomita K, et al. Prediction of final tumor response to preoperative chemotherapy by Tc-99m MIBI imaging at the middle of chemotherapy in malignant bone and soft tissue tumors: comparison with Tl-201 imaging. J Orthop Res. 2008;26(3):411–8.

    Article  PubMed  Google Scholar 

  27. Im HJ, Kim TS, Park SY, Min HS, Kim JH, Kang HG, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging. 2012;39(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  28. Byun BH, Kong CB, Lim I, Kim BI, Choi CW, Song WS, et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging. 2014;41(8):1553–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Wakabayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakabayashi, H., Saito, J., Taki, J. et al. Triple-phase contrast-enhanced MRI for the prediction of preoperative chemotherapeutic effect in patients with osteosarcoma: comparison with 99mTc-MIBI scintigraphy. Skeletal Radiol 45, 87–95 (2016). https://doi.org/10.1007/s00256-015-2250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2250-1

Keywords

Navigation