Skip to main content
Log in

Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18 F-FDG PET/CT and MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the potential of sequential fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET)/computed tomography (CT) and MRI (PET/MRI) after one cycle of neoadjuvant chemotherapy to predict a poor histologic response in osteosarcoma.

Methods

A prospective study was conducted on 30 patients with osteosarcoma treated with two cycles of neoadjuvant chemotherapy and surgery. All patients underwent PET/MRI before, after one cycle, and after the completion of neoadjuvant chemotherapy, respectively. Imaging parameters [maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and tumor volume based on magnetic resonance (MR) images (MRV)] and their % changes were calculated on each PET/MRI data set, and histological responses were evaluated on the postsurgical specimen.

Results

A total of 17 patients (57 %) exhibited a poor histologic response after two cycles of chemotherapy. Unlike the little volumetric change in MRI, PET parameters significantly decreased after one and two cycles of chemotherapy, respectively. After one cycle of chemotherapy, SUVmax, MTV, and TLG predicted the poor responders. Among these parameters, either MTV ≥ 47 mL or TLG ≥ 190 g after one cycle of chemotherapy was significantly associated with a poor histologic response on multivariate logistic regression analysis (OR 8.98, p = 0.039). The sensitivity, specificity, and accuracy of these parameters were 71 %, 85 % and 77 %; and 71 %, 85 % and 77 %, respectively.

Conclusion

The histologic response to neoadjuvant chemotherapy in osteosarcoma can be predicted accurately by FDG PET after one course of chemotherapy. Among PET parameters, MTV and TLG were independent predictors of the histologic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bacci G, Longhi A, Fagioli F, Briccoli A, Versari M, Picci P. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. Eur J Cancer. 2005;41:2836–45.

    Article  CAS  PubMed  Google Scholar 

  2. Hagleitner MM, de Bont ES, Te Loo DM. Survival trends and long-term toxicity in pediatric patients with osteosarcoma. Sarcoma. 2012;2012:636405.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bacci G, Ferrari S, Bertoni F, Ruggieri P, Picci P, Longhi A, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016–27.

    CAS  PubMed  Google Scholar 

  4. Kim MS, Lee SY, Lee TR, Cho WH, Song WS, Koh JS, et al. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcoma. Ann Oncol. 2009;20:955–60.

    Article  CAS  PubMed  Google Scholar 

  5. Bajpai J, Gamnagatti S, Kumar R, Sreenivas V, Sharma MC, Khan SA, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol. 2011;41:441–50.

    Article  PubMed  Google Scholar 

  6. Jeon DG, Song WS. How can survival be improved in localized osteosarcoma? Expert Rev Anticancer Ther. 2010;10:1313–25.

    Article  PubMed  Google Scholar 

  7. Coffin CM, Lowichik A, Zhou H. Treatment effects in pediatric soft tissue and bone tumors: practical considerations for the pathologist. Am J Clin Pathol. 2005;123:75–90.

    Article  PubMed  Google Scholar 

  8. Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: a critical review. J Clin Oncol. 1994;12:423–31.

    CAS  PubMed  Google Scholar 

  9. Wellings RM, Davies AM, Pynsent PB, Carter SR, Grimer RJ. The value of computed tomographic measurements in osteosarcoma as a predictor of response to adjuvant chemotherapy. Clin Radiol. 1994;49:19–23.

    Article  CAS  PubMed  Google Scholar 

  10. Ongolo-Zogo P, Thiesse P, Sau J, Desuzinges C, Blay JY, Bonmartin A, et al. Assessment of osteosarcoma response to neoadjuvant chemotherapy: comparative usefulness of dynamic gadolinium-enhanced spin-echo magnetic resonance imaging and technetium-99m skeletal angioscintigraphy. Eur Radiol. 1999;9:907–14.

    Article  CAS  PubMed  Google Scholar 

  11. Holscher HC, Bloem JL, Nooy MA, Taminiau AH, Eulderink F, Hermans J. The value of MR imaging in monitoring the effect of chemotherapy on bone sarcomas. AJR Am J Roentgenol. 1990;154:763–9.

    Article  CAS  PubMed  Google Scholar 

  12. Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50:340–7.

    Article  PubMed  Google Scholar 

  13. Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS, et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50:1435–40.

    Article  CAS  PubMed  Google Scholar 

  14. Kong CB, Byun BH, Lim I, Choi CW, Lim SM, Song WS, et al. (18)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging. 2013;40:728–36.

    Article  CAS  PubMed  Google Scholar 

  15. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53:845–55.

    Article  PubMed  Google Scholar 

  16. Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S86–92.

    Article  PubMed  Google Scholar 

  17. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med. 2012;53:928–38.

    Article  PubMed  Google Scholar 

  18. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med. 2012;53:1244–52.

    Article  PubMed  Google Scholar 

  19. Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, et al. Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol. 1995;50:384–90.

    Article  CAS  PubMed  Google Scholar 

  20. Holscher HC, Bloem JL, Vanel D, Hermans J, Nooy MA, Taminiau AH, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology. 1992;182:839–44.

    CAS  PubMed  Google Scholar 

  21. Im HJ, Kim TS, Park SY, Min HS, Kim JH, Kang HG, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging. 2012;39:39–49.

    Article  CAS  PubMed  Google Scholar 

  22. Rosen G, Marcove RC, Huvos AG, Caparros BI, Lane JM, Nirenberg A, et al. Primary osteogenic sarcoma: eight-year experience with adjuvant chemotherapy. J Cancer Res Clin Oncol. 1983;106(Suppl):55–67.

    Article  PubMed  Google Scholar 

  23. Byun BH, Kong CB, Park J, Seo Y, Lim I, Choi CW, et al. Initial Metabolic Tumor Volume Measured by 18F-FDG PET/CT Can Predict the Outcome of Osteosarcoma of the Extremities. J Nucl Med. 2013;54:1725–32.

    Article  CAS  PubMed  Google Scholar 

  24. Kim MS, Lee SY, Cho WH, Song WS, Koh JS, Lee JA, et al. Tumor necrosis rate adjusted by tumor volume change is a better predictor of survival of localized osteosarcoma patients. Ann Surg Oncol. 2008;15:906–14.

    Article  PubMed  Google Scholar 

  25. Bieling P, Rehan N, Winkler P, Helmke K, Maas R, Fuchs N, et al. Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol. 1996;14:848–58.

    CAS  PubMed  Google Scholar 

  26. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Ill AT. AJCC cancer staging manual. 7th ed. New York: Springer-Verlag; 2010. p. 143–64.

    Google Scholar 

  27. Carsi B, Rock MG. Primary osteosarcoma in adults older than 40 years. Clin Orthop Relat Res. 2002;397:53–61.

    Article  PubMed  Google Scholar 

  28. Lee JA, Kim MS, Kim DH, Lim JS, Park KD, Song WS, et al. Osteosarcoma developed in the period of maximal growth rate have inferior prognosis. J Pediatr Hematol Oncol. 2008;30:419–24.

    Article  PubMed  Google Scholar 

  29. Byun BH, Kong CB, Lim I, Choi CW, Song WS, Cho WH, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54:1053–9.

    Article  CAS  PubMed  Google Scholar 

  30. van der Woude HJ, Bloem JL, Hogendoorn PC. Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing's sarcoma: review of current imaging modalities. Skelet Radiol. 1998;27:57–71.

    Article  Google Scholar 

  31. Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology. 2012;264:559–66.

    Article  PubMed  Google Scholar 

  32. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44:930–42.

    PubMed  Google Scholar 

  33. Werner MK, Schmidt H, Schwenzer NF. MR/PET: a new challenge in hybrid imaging. AJR Am J Roentgenol. 2012;199:272–7.

    Article  PubMed  Google Scholar 

  34. Scheuermann JS, Saffer JR, Karp JS, Levering AM, Siegel BA. Qualification of PET scanners for use in multicenter cancer clinical trials: the American College of Radiology Imaging Network experience. J Nucl Med. 2009;50:1187–93.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Establishment of Center for PET Application Technology Development, Korea Institute of Radiological and Medical Sciences (KIRAMS), and by grants from the Ministry of Education, Science and Technology (50441-2014).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Bae Kong or Sang Moo Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(PDF 63 kb)

Supplemental Table 2

(PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, B.H., Kong, CB., Lim, I. et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18 F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging 41, 1553–1562 (2014). https://doi.org/10.1007/s00259-014-2746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2746-2

Keywords

Navigation