Skip to main content

Advertisement

Log in

Compressive myelopathy: magnetic resonance imaging findings simulating idiopathic acute transverse myelopathy

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To provide magnetic resonance imaging (MRI) findings of compressive myelopathy simulating idiopathic acute transverse myelopathy (ATM).

Materials and methods

From 19,416 patients who had spinal MRI from 1 September 2004 to 10 July 2011, the patients who met inclusion criteria were enrolled as follows: (1) definable cord compression, (2) long-segmental intramedullary T2-high signal intensity (HSI) extending more than 2 vertebral segments, and (3) no history of trauma, malignancy, or demyelinating disease. The characteristics of T2-HSI and contrast enhancement pattern were analyzed. The patients’ clinical information was collected in the process.

Results

Thirteen patients (10 men, 3 women; mean age, 52.8 years; age range, 43–77 years) were included in this study. Twelve patients had cervical cord compression and one had thoracic compression. Common findings of T2-HSI included fusiform shape (100 %) with cord swelling (92.3 %), cord compression in midline location (76.9 %), diffuse distribution occupying more than two-thirds of the cross-sectional dimension of the cord in axial image (84.6 %), and focal and peripheral enhancement (63.6 %). Intravenous corticosteroid was administered to four patients, including two patients following decompressive surgery, and interval decrease in T2-HSI was seen in three patients, but with residual lesions at cord compression level.

Conclusions

Spinal cord compression can induce long-segmental cord signal change, such as idiopathic ATM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim R, Spencer S, Meredith R, et al. Extradural spinal cord compression: analysis of factors determining functional prognosis—prospective study. Radiology. 1990;176:279–82.

    CAS  PubMed  Google Scholar 

  2. Yukawa Y, Kato F, Yoshihara H, Yanase M, Ito K. MR T2 image classification in cervical compression myelopathy: predictor of surgical outcomes. Spine. 2007;32:1675–8.

    Article  PubMed  Google Scholar 

  3. Ratliff J, Voorhies R. Increased MRI signal intensity in association with myelopathy and cervical instability: case report and review of the literature. Surg Neurol. 2000;53:8–13.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi M, Yamashita Y, Sakamoto Y, Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology. 1989;173:219–24.

    CAS  PubMed  Google Scholar 

  5. Ohshio I, Hatayama A, Kaneda K, Takahara M, Nagashima K. Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine. 1993;18:1140–9.

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy: does it predict the outcome of conservative treatment? Spine. 2000;25:677–82.

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez de Rota JJ, Meschian S, Fernandez de Rota A, Urbano V, Baron M. Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine. 2007;6:17–22.

    Article  PubMed  Google Scholar 

  8. Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine. 2001;26:1238–45.

    Article  CAS  PubMed  Google Scholar 

  9. Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ. Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology. 2001;221:789–94.

    Article  CAS  PubMed  Google Scholar 

  10. Kelley BJ, Erickson BJ, Weinshenker BG. Compressive myelopathy mimicking transverse myelitis. Neurologist. 2010;16:120–2.

    Article  PubMed  Google Scholar 

  11. de Seze J, Lanctin C, Lebrun C, et al. Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology. 2005;65:1950–3.

    Article  PubMed  Google Scholar 

  12. Awad A, Stüve O. Idiopathic transverse myelitis and neuromyelitis optica: clinical profiles, pathophysiology and therapeutic choices. Curr Neuropharmacol. 2011;9:417–28.

    Article  CAS  PubMed  Google Scholar 

  13. Choi KH, Lee KS, Chung SO, et al. Idiopathic transverse myelitis: MR characteristics. AJNR Am J Neuroradiol. 1996;17:1151–60.

    CAS  PubMed  Google Scholar 

  14. Brinar VV, Habek M, Brinar M, Malojcic B, Boban M. The differential diagnosis of acute transverse myelitis. Clin Neurol Neurosurg. 2006;108:278–83.

    Article  PubMed  Google Scholar 

  15. Kang YS, Lee JW, Koh YH, et al. New MRI grading system for the cervical canal stenosis. AJR Am J Roentgenol. 2011;197:W134–40.

    Article  PubMed  Google Scholar 

  16. Brinar VV, Habek M, Zadro I, Barun B, Ozretic D, Vranjes D. Current concepts in the diagnosis of transverse myelopathies. Clin Neurol Neurosurg. 2008;110:919–27.

    Article  PubMed  Google Scholar 

  17. Kumar N. Pearls: myelopathy. Semin Neurol. 2010;30:38–43.

    Article  PubMed  Google Scholar 

  18. Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients. Radiology. 2007;243:820–7.

    Article  PubMed  Google Scholar 

  19. Bodley R. Imaging in chronic spinal cord injury—indications and benefits. Eur J Radiol. 2002;42:135–53.

    Article  PubMed  Google Scholar 

  20. Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58:840–6.

    Article  PubMed  Google Scholar 

  21. Wingerchuk D, Lennon V, Pittock S, Lucchinetti C, Weinshenker B. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66:1485–9.

    Article  CAS  PubMed  Google Scholar 

  22. Maus TP. Imaging of spinal stenosis: neurogenic intermittent claudication and cervical spondylotic myelopathy. Radiol Clin N Am. 2012;50:651–79.

    Article  PubMed  Google Scholar 

  23. Resnick D, Kransdorf MJ. Bone and joint imaging. Philadelphia: Elsevier; 2005.

    Google Scholar 

  24. Takahashi M, Sakamoto Y, Miyawaki M, Bussaka H. Increased MR signal intensity secondary to chronic cervical cord compression. Neuroradiology. 1987;29:550–6.

    Article  CAS  PubMed  Google Scholar 

  25. Haupts M, Haan J. Further aspects of MR-signal enhancements in stenosis of the cervical spinal canal. Neuroradiology. 1988;30:545–6.

    Article  CAS  PubMed  Google Scholar 

  26. Mizuno J, Nakagawa H, Inoue T, Hashizume Y. Clinicopathological study of “snake-eye appearance” in compressive myelopathy of the cervical spinal cord. J Neurosurg Spine. 2003;99:162–8.

    Article  Google Scholar 

  27. Ozawa H, Sato T, Hyodo H, et al. Clinical significance of intramedullary Gd-DTPA enhancement in cervical myelopathy. Spinal Cord. 2009;48:415–22.

    Article  PubMed  Google Scholar 

  28. Boet R, Chan YL, King A, Mok CT, Poon WS. Contrast enhancement of the spinal cord in a patient with cervical spondylotic myelopathy. J Clin Neurosci. 2004;11:512–4.

    Article  PubMed  Google Scholar 

  29. Tartaglino LM, Croul SE, Flanders AE, et al. Idiopathic acute transverse myelitis: MR imaging findings. Radiology. 1996;201:661–9.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, Y.J., Lee, J.W., Park, K.S. et al. Compressive myelopathy: magnetic resonance imaging findings simulating idiopathic acute transverse myelopathy. Skeletal Radiol 42, 793–802 (2013). https://doi.org/10.1007/s00256-012-1556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1556-5

Keywords

Navigation