Skip to main content

Advertisement

Log in

Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Higher chain alcohols have gained much attention as next generation transport fuels because of their higher energy density and low moisture absorption capacity compared to ethanol. In the present study, we attempted to engineer Saccharomyces cerevisiae for the synthesis of isoamyl alcohol via de novo leucine biosynthetic pathway coupled with Ehrlich degradation pathway. To achieve high-level production of isoamyl alcohol, two strategies are used in the current study: (1) reconstruction of a chromosome-based leucine biosynthetic pathway under the control of galactose-inducible promoters; (2) overexpression of the mitochondrial 2-isopropylmalate (α-IPM) transporter to boost the transportation of α-IPM from mitochondria to the cytosol. We found engineered yeast cells with a combinatorially assembled leucine biosynthetic pathway coupled with the Ehrlich degradation pathway resulted in high-level production of isoamyl alcohol; however, there was still a significant amount of isobutanol co-formed during the fermentation process. Further introducing an α-IPM transporter not only boosted the isoamyl alcohol biosynthetic pathway activity but also reduced isobutanol to a much lower level. Taken together, our work represents the first study to construct a chromosome-based leucine biosynthetic pathway for isoamyl alcohol production. Furthermore, the utilization of the mitochondrial compartment coupled with the transporter engineering serves as an effective approach to minimize the by-product formation and to improve the isoamyl alcohol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blombach B, Eikmanns BJ (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2(6):346–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17(3):480–488

    Article  CAS  PubMed  Google Scholar 

  • Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74(18):5769–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor MR, Cann AF, Liao JC (2010) 3-methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86(4):1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferramosca A, Zara V (2013) Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. Biochim Biophys Acta 1833(3):494–502

    Article  CAS  PubMed  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30(6):e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res 13(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159(1–2):32–37

    Article  CAS  PubMed  Google Scholar 

  • Kuan J, Saier MH Jr (1993) The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 28(3):209–233

    Article  CAS  PubMed  Google Scholar 

  • Kunji ER (2004) The role and structure of mitochondrial carriers. FEBS Lett 564(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Lopez G, Quezada H, Duhne M, Gonzalez J, Lezama M, El-Hafidi M, Colon M, Martinez de la Escalera X, Flores-Villegas MC, Scazzocchio C, DeLuna A, Gonzalez A (2015) Diversification of paralogous alpha-isopropylmalate synthases by modulation of feedback control and hetero-oligomerization in Saccharomyces cerevisiae. Eukaryot Cell 14(6):564–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marobbio CM, Giannuzzi G, Paradies E, Pierri CL, Palmieri F (2008) Alpha-isopropylmalate, a leucine biosynthesis intermediate in yeast, is transported by the mitochondrial oxaloacetate carrier. J Biol Chem 283(42):28445–28453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A (2013) Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Factories 12:119

    Article  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274(32):22184–22190

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim S, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98(21):9139–9147

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Sadowski I, Su TC, Parent J (2007) Disintegrator vectors for single-copy yeast chromosomal integration. Yeast 24(5):447–455

    Article  CAS  PubMed  Google Scholar 

  • Savage N (2011) Fuel options: the ideal biofuel. Nature 474(7352):S9–11

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Liao JC (2011) An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 13(6):674–681

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BW, Shi AQ, Tu R, Zhang XL, Wang QH, Bai FW (2012) Branched-chain higher alcohols. Adv Biochem Eng Biotechnol 128:101–118

    CAS  PubMed  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Ching CB (2014) Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast. Biotechnol Bioeng 111(3):608–617

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ching CB (2015a) Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 4(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ching CB (2015b) Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Factories 14(1):38

    Article  Google Scholar 

  • Yuan J, Ching CB (2016) Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metab Eng. doi:​10.1016/j.ymben.2016.07.008

Download references

Acknowledgements

This work was funded by the National University of Singapore (Start-up Grant: R279 000 364 133).

Authors’ contributions

JY conceived the study, designed the experiments, performed the experiments, analyzed the data, and drafted the manuscript. XC participated in the experiments, analyzed the data, and helped to revise the manuscript. PM participated in the experiments, analyzed the data, and helped to revise the manuscript. CBC supervised the project and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jifeng Yuan or Chi-Bun Ching.

Ethics declarations

Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Chen, X., Mishra, P. et al. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Appl Microbiol Biotechnol 101, 465–474 (2017). https://doi.org/10.1007/s00253-016-7970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7970-1

Keywords

Navigation