Skip to main content
Log in

Streptomycin favors biofilm formation by altering cell surface properties

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Studies have shown that external stress induces biofilm formation, but the underlying details are not clearly understood. This study investigates the changes in cell surface properties leading to increase in biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa in the presence of streptomycin. Bacterial attachment in the presence and absence of streptomycin was quantified by fluorescence spectroscopy. In addition, cell surface charge and contact angle were measured and the free energy barrier for attachment was modeled using extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. Peptides from bacterial cell surface were shaved by protease treatment and identified with ultra-performance liquid chromatography (UPLC)-QTOF and a homology search program SPIDER. Biofilm formation increased significantly in the presence of streptomycin (10 mg/L) in the culture. Bacterial cell surface charge reduced, and hydrophobicity increased leading to a net decrease in the free energy barrier for attachment. Extracellular matrix-binding protein was positively regulated in S. aureus under stress, indicating stronger interaction between bacterial cells and solid surface. In addition, several other proteins including biofilm regulatory proteins, multidrug efflux pumps, transporters, signaling proteins, and virulence factors were differentially expressed on bacterial cell surface, which is indicative of a strong stress response by bacteria to streptomycin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Bakri AG, Gilbert P, Allison DG (2005) Influence of gentamicin and tobramycin on binary biofilm formation by co-cultures of Burkholderia cepacia and Pseudomonas aeruginosa. J Basic Microbiol 45:392–396

    Article  CAS  PubMed  Google Scholar 

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  PubMed  Google Scholar 

  • Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 2:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf, B 14:141–148

    Article  CAS  Google Scholar 

  • Bazire A, Diab F, Jebbar M, Haras D (2007) Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 34:5–8

    Article  CAS  PubMed  Google Scholar 

  • Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    Article  CAS  PubMed  Google Scholar 

  • Clarke SR, Harris LG, Richards RG, Foster SJ (2002) Analysis of ebh, a 1.1-megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus. Infect Immun 70:6680–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74(8):4950–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conibear TCR, Collins SL, Webb JS (2009) Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS One 4:e6289

    Article  PubMed  PubMed Central  Google Scholar 

  • Croes S, Deurenberg R, Boumans M-L, Beisser P, Neef C, Stobberingh E (2009) Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier B, Aras R, Hooper DC (2000) Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol 182:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardy JL, Brinkman FSL (2006) Methods for predicting bacterial protein subcellular localization. Nat Rev Micro 4:741–751

    Article  CAS  Google Scholar 

  • Gotoh H, Kasaraneni N, Devineni N, Dallo SF, Weitao T (2010) SOS involvement in stress-inducible biofilm formation. Biofouling 26:603–611

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ma B, Zhang K (2005) SPIDER: software for protein identification from sequence tags with de novo sequencing error. J Bioinforma Comput Biol 3:697–716

    Article  CAS  Google Scholar 

  • Harimawan A, Rajasekar A, Ting YP (2011) Bacteria attachment to surfaces—AFM force spectroscopy and physicochemical analyses. J Colloid Interface Sci 364:213–218

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Huang T-P, Lu K-M, Chen Y-H (2013) A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. Citri. PLoS One 8:e62824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34:737–751

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ting Y-P (2013) Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Colloids Surf., B 111:747–754

    Article  CAS  Google Scholar 

  • Kumar A, Ting Y-P (2015) Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus. Env Microbiol 17(11):4459–4468

    Article  CAS  Google Scholar 

  • Li YH, Lau PC, Tang N, Svensater G, Ellen RP, Cvitkovitch DG (2002) Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 184:6333–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhao Q (2005) Influence of surface energy of modified surfaces on bacterial adhesion. Biophys Chem 117:39–45

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Johnson R (2012) De novo sequencing and homology searching. Mol Cell Proteomics 11(O111):014902

    PubMed  Google Scholar 

  • McQuillen K (1951) The bacterial surface IV. Effect of streptomycin on the electrophoretic mobility of Escherichia coli and Staphylococcus aureus. Biochimica et Biophysica Acta 7:54–60

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Kuroiwa A, Nagayama A (1995) Changes of surface hydrophobicity and charge of Staphylococcus aureus treated with sub-MIC of antibiotics and their effects on the chemiluminescence response of phagocytic cells. Chemotherapy 41(2):77–81

    Article  CAS  PubMed  Google Scholar 

  • Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Thermal Fluid Sci 14(4):316–322

    Article  CAS  Google Scholar 

  • Rodriguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T (2006) Characterization and identification of vaccine candidate proteins through analysis of the group a Streptococcus surface proteome. Nature Biotechnol 24:191–197

    Article  CAS  Google Scholar 

  • Sheng X, Ting YP, Pehkonen SO (2007) Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope. J Colloid Interface Sci 310:661–669

    Article  CAS  PubMed  Google Scholar 

  • Stickler D (1999) Biofilms. Curr Opin Microbiol 2:270–275

    Article  CAS  PubMed  Google Scholar 

  • Szurmant H, Bu L, Brooks CL, Hoch JA (2008) An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. Proc Natl Acad Sci U S A 105:5891–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Mei HC, Weerkamp AH, Busscher HJ (1987) A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J Microbiol Methods 6:277–287

    Article  Google Scholar 

  • van Loosdrecht MC, Norde W, Zehnder AJ (1990) Physical chemical description of bacterial adhesion. J Biomater Appl 5:91–106

  • van Oss CJ (1993) Acid-base interfacial interactions in aqueous media. Colloids Surf A Physicochem Eng Asp 78:1–49

    Article  Google Scholar 

  • van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf, B 5:91–110

    Article  Google Scholar 

  • van Oss CJ (2006) Interfacial forces in aqueous media. CRC PRESS, New York

    Book  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Lee May May from Bruker Daltonics for her help with Bruker software and to Agricultural Research Services (ARS) Culture Collection, USDA, for providing the P. aeruginosa strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Peng Ting.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ting, YP. Streptomycin favors biofilm formation by altering cell surface properties. Appl Microbiol Biotechnol 100, 8843–8853 (2016). https://doi.org/10.1007/s00253-016-7793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7793-0

Keywords

Navigation