Skip to main content
Log in

Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60–65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0–9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu2+, the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn2+, Mg2+, Ca2+, Fe2+, Co2+, Zn2+, and Ni2+. The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chak KF, Kuo WS, Lu FM, James R (1991) Cloning and characterization of the ColE7 plasmid. J Gen Microbiol 137:91–100

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Hsia KC, Doudeva LG, Chak KF, Yuan HS (2002) The crystal structure of the nuclease domain of colicin E7 suggests a mechanism for binding to double-stranded DNA by the H-N-H endonucleases. J Mol Biol 324:227–236

    Article  CAS  PubMed  Google Scholar 

  • Drouin M, Lucas P, Otis C, Lemieux C, Turmel M (2000) Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins. Nucleic Acids Res 28:4566–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbalenya AE (1994) Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyurcsik B (2015) Rescue of the activity of HNH nuclease mutants—towards controlled enzymes for gene therapy. Curr Protein Pept Sci 16:1

    Google Scholar 

  • Han TS, Yamada-Mabuchi M, Zhao G, Li L, Liu G, Ou HY, Deng ZX, Zheng Y, He XY (2015) Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins. Nucleic Acids Res 43:1147–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiom K, Sedgwick SG (1991) Cloning and structural characterization of the mcrA locus of Escherichia coli. J Bacteriol 173:7368–7373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Yuan HS (2007) The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases. J Mol Biol 368:812–821

    Article  CAS  PubMed  Google Scholar 

  • Kala S, Cumby N, Sadowski PD, Hyder BZ, Kanelis V, Davidson AR, Maxwell KL (2014) HNH proteins are a widespread component of phage DNA packaging machines. Proc Natl Acad Sci U S A 111:6022–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS (1999) The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 7:91–102

    Article  CAS  PubMed  Google Scholar 

  • Ku WY, Liu YW, Hsu YC, Liao CC, Liang PH, Yuan HS, Chak KF (2002) The zinc ion in the HNH motif of the endonuclease domain of colicin E7 is not required for DNA binding but is essential for DNA hydrolysis. Nucleic Acids Res 30:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landthaler M, Lau NC, Shub DA (2004) Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 186:4307–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wu S, Song Q, Zhang X, Xie L (2006) Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol 53:163–166

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang X (2008) Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. Appl Microbiol Biotechnol 80:697–707

    Article  CAS  PubMed  Google Scholar 

  • Moodley S, Maxwell KL, Kanelis V (2012) The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci 21:809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, Kuhlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR, James R, Kleanthous C (2001) Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J Mol Biol 314:735–749

    Article  CAS  PubMed  Google Scholar 

  • Pommer AJ, Wallis R, Moore GR, James R, Kleanthous C (1998) Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli. Biochem J 334:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiles-Puchalt N, Carpena N, Alonso JC, Novick RP, Marina A, Penades JR (2014) Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci U S A 111:6016–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano Y, Matsui H, Kobayashi M, Kageyama M (1993) Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol 175:2907–2916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V (2004) Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res 32:6129–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen BW, Heiter DF, Chan SH, Wang H, Xu SY, Morgan RD, Wilson GG, Stoddard BL (2010) Unusual target site disruption by the rare-cutting HNH restriction endonuclease PacI. Structure 18:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56

    Article  CAS  PubMed  Google Scholar 

  • Shub DA, Goodrich-Blair H, Eddy SR (1994) Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 19:402–404

    Article  CAS  PubMed  Google Scholar 

  • Sokolowska M, Czapinska H, Bochtler M (2009) Crystal structure of the ββα-Me type II restriction endonuclease Hpy99I with target DNA. Nucleic Acids Res 37:3799–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Article  CAS  PubMed  Google Scholar 

  • Sui MJ, Tsai LC, Hsia KC, Doudeva LG, Ku WY, Han GW, Yuan HS (2002) Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions. Protein Sci 11:2947–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GW, Edgell DR (2009) Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII. Nucleic Acids Res 37:7110–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SY (2015) Sequence-specific DNA nicking endonucleases. Biomol Concepts 6:253–267

    Article  CAS  PubMed  Google Scholar 

  • Xu SY, Gupta YK (2013) Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease. Nucleic Acids Res 41:378–390

    Article  CAS  PubMed  Google Scholar 

  • Xu SY, Kuzin AP, Seetharaman J, Gutjahr A, Chan SH, Chen Y, Xiao R, Acton TB, Montelione GT, Tong L (2013) Structure determination and biochemical characterization of a putative HNH endonuclease from Geobacter metallireducens GS-15. PLoS One 8:e72114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Kang M, Xu J, Huang Y (2015) Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 99:6585–6597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Xiaobo Zhang (Zhejiang University, China) for providing the genomic DNA of GVE2. This work was supported by the National Natural Science Foundation of China Grant (41306131), the Natural Science Foundation Grant for College and University of Jiangsu Province, China (13KJB180029), the Provincial Natural Science Foundation Grant of Jiangsu Province, China (BK20130440), the open project of State Key Laboratory of Microbial Resources (SKLMR-20130603), the Open-end Funds of Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology (2014HS008), and the open Research Fund Program of the State Key Laboratory of Virology of China (2016KF006) to L. Z., the National Natural Science Foundation of China Grant (41271521) to X. Z., the National Natural Science Foundation of China Grant (31270791) to Y. G., the Yangzhou University College Student Science and Technology Innovation Grant to K. Q., and the Natural Sciences and Engineering Research Council of Canada (NSERC) to K. M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Likui Zhang or Yong Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Likui Zhang and Yanchao Huang contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, Y., Xu, D. et al. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. Appl Microbiol Biotechnol 100, 8003–8012 (2016). https://doi.org/10.1007/s00253-016-7568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7568-7

Keywords

Navigation