Skip to main content
Log in

Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The industrial manufacturing process of lactose-free milk products depends on the application of commercial β-galactosidase (lactase) preparations. These preparations are often obtained from Kluyveromyces lactis. There is a gene present in the genome of K. lactis which should encode for an enzyme called arylsulfatase (EC 3.1.6.1). Therefore, this enzyme could also be present in β-galactosidase preparations. The arylsulfatase is suspected of being responsible for an unpleasant “cowshed-like” off-flavor resulting from the release of p-cresol from milk endogenous alkylphenol sulfuric esters. So far, no gene/functionality relationship is described. In addition, no study is available which has shown that arylsulfatase from K. lactis is truly responsible for the flavor generation. In this study, we cloned the putative arylsulfatase gene from K. lactis GG799 into the commercially available vector pKLAC2. The cloning strategy chosen resulted in a homologous, secretory expression of the arylsulfatase. We showed that the heretofore putative arylsulfatase has the desired activity with the synthetic substrate p-nitrophenyl sulfate and with the natural substrate p-cresol sulfate. The enzyme was biochemically characterized and showed an optimum temperature of 45–50 °C and an optimum pH of 9–10. Additionally, the arylsulfatase was activated by Ca2+ ions and was inactivated by Zn2+ ions. Moreover, the arylsulfatase was inhibited by p-cresol and sulfate ions. Finally, the enzyme was added to ultra-heat treated (UHT) milk and a sensory triangle test verified that the arylsulfatase from K. lactis can cause an unpleasant “cowshed-like” off-flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi T, Murooka Y, Harada T (1975) Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes. J Bacteriol 121:29–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, James K (1999) Derivation of a possible transition-state for the reaction catalysed by the enzyme estrone sulfatase (ES). Bioorganic Med Chem Lett 9:1645–1650

    Article  CAS  Google Scholar 

  • Barbeyron T, Potin P, Richard C, Collin O, Kloareg B (1995) Arylsulphatase from Alteromonas carrageenovora. Microbiology 141(Pt 1):2897–2904

    Article  CAS  PubMed  Google Scholar 

  • Beil S, Kehrli H, James P, Staudenmann W, Cook AM, Leisinger T, Kertesz MA (1995) Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur J Biochem 229:385–394

    Article  CAS  PubMed  Google Scholar 

  • Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O (2010) Anaerobic sulfatase-maturating enzyme—a mechanistic link with glycyl radical-activating enzymes? FEBS J 277:1906–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis? A review. Appl Microbiol Biotechnol 41:1–3

    Article  Google Scholar 

  • Brega A, Prandini P, Amaglio C, Pafumi E (1990) Determination of phenol, m-, o- and p-cresol, p-aminophenol and p-nitrophenol in urine by high-performance liquid chromatography. J Chromatogr 535:311–316

    Article  CAS  PubMed  Google Scholar 

  • Cloves JM, Dodgson KS, Games DE, Shaw DJ, White GF (1977) The mechanism of action of primary alkylsulphohydrolase and arylsulphohydrolase from a detergent-degrading micro-organism. Biochem J 167:843–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet MGG 218:229–239

    Article  PubMed  Google Scholar 

  • De Swaaf MPM, Van Dijk AA, Edens L, Dekker PJT (2007) Genetic engineering or chromatographic preparation of arylsulfatase-free lactase compositions yielding a clean taste for use in dairy products. PCT Int. Appl. DSM IP Assets B.V., Neth

  • Erich S, Kuschel B, Schwarz T, Ewert J, Böhmer N, Niehaus F, Eck J, Lutz-Wahl S, Stressler T, Fischer L (2015) Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. J Biotechnol 210:27–37

    Article  PubMed  Google Scholar 

  • Frese M-A, Schulz S, Dierks T (2008) Arylsulfatase G, a novel lysosomal sulfatase. J Biol Chem 283:11388–11395

    Article  CAS  PubMed  Google Scholar 

  • Inchaurrondo VA, Yantorno OM, Voget CE (1994) Yeast growth and β-galactosidase production during aerobic batch cultures in lactose-limited synthetic medium. Process Biochem 29:47–54

    Article  CAS  Google Scholar 

  • Jonas S, van Loo B, Hyvönen M, Hollfelder F (2008) A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. J Mol Biol 384:120–136

    Article  CAS  PubMed  Google Scholar 

  • Kertesz MA (2000) Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    CAS  PubMed  Google Scholar 

  • Kilic M, Lindsay RC (2006) Arylsulphatase activity in milk and rennet from different sources. Int Dairy J 16:88–91

    Article  CAS  Google Scholar 

  • Kim Ha J, Lindsay RC (1991) Contributions of cow, sheep, and goat milks to characterizing branched-chain fatty acid and phenolic flavors in varietal cheeses. J Dairy Sci 74:3267–3274

    Article  Google Scholar 

  • Kim J-H, Byun D-S, Godber JS, Choi J-S, Choi W-C, Kim H-R (2004) Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Appl Microbiol Biotechnol 63:553–559

    Article  CAS  PubMed  Google Scholar 

  • Kim D-E, Kim K-H, Bae Y-J, Lee J-H, Jang Y-H, Nam S-W (2005) Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr Purif 39:107–115

    Article  CAS  PubMed  Google Scholar 

  • Lim J-M, Jang Y-H, Kim H-R, Kim YT, Choi TJ, Kim JK, Nam S-W (2004) Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J Microbiol Biotechnol 14:777–782

    CAS  Google Scholar 

  • Lopez V, Lindsay RC (1993) Metabolic conjugates as precursors for characterizing flavor compounds in ruminant milks. J Agric Food Chem 41:446–454

    Article  CAS  Google Scholar 

  • Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W (1998) Crystal Structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate Ester Hydrolysis. Biochemistry 37:3654–3664

    Article  CAS  PubMed  Google Scholar 

  • Marquordt C, Fang Q, Will E, Peng J, Von Figura K, Dierks T (2003) Posttranslational modification of serine to formylglycine in bacterial sulfatases: recognition of the modification motif by the iron-sulfur protein AtsB. J Biol Chem 278:2212–2218

    Article  CAS  PubMed  Google Scholar 

  • Miech C (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J Biol Chem 273:4835–4837

    Article  CAS  PubMed  Google Scholar 

  • Mittal SB, Newell G, Hourigan JA, Zadow JG (1991) The effect of protease contamination in lactase on the flavor of lactose-hydrolyzed milks. Aust J Dairy Technol 46:46–47

    CAS  Google Scholar 

  • Murooka Y, Yim MH, Harada T (1980) Formation and purification of Serratia marcescens arylsulfatase. Appl Environ Microbiol 39:812–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murooka Y, Ishibashi K, Yasumoto M, Sasaki M, Sugino H, Azakami H, Yamashita M (1990) A sulfur- and tyramine-regulated Klebsiella aerogenes operon containing the arylsulfatase (atsA) gene and the atsB gene. J Bacteriol 172:2131–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph W (1984) Direct food substances affirmed as generally recognized as safe; lactase enzyme preparation from Kluyveromyces lactis. Fed Regist 49:47384–47387

    Google Scholar 

  • Roessler EB, Pangborn RM, Sidel JL, Stone H (1978) Expanded statistical tables for estimating significance in paired-preference, paired-difference, duo-trio and triangle tests. J Food Sci 43:940–943

    Article  Google Scholar 

  • Sakurai Y, Isobe K, Shiota H (1980) Partial purification and some properties of an alkaline arylsulfatase produced by Aspergillus fungi. Agric Biol Chem 44:1–7

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sánchez M, Iglesias FJ, Santamaría C, Domínguez A (1993) Transformation of Kluyveromyces lactis by electroporation. Appl Environ Microbiol 59:2087–2092

    PubMed  PubMed Central  Google Scholar 

  • Stressler T, Eisele T, Schlayer M, Fischer L (2012) Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express 2:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinkels BW, van Ooyen AJJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187–201

    Article  PubMed  Google Scholar 

  • Toesch M, Schober M, Faber K (2014) Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl Microbiol Biotechnol 98:1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki T, Sawada Y, Fukagawa Y, Oki T (1995) Arylsulfatase from Streptomyces griseoruhiginosus S980-14. Biosci Biotechnol Biochem 59:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wolfgang Claaßen (University of Hohenheim) for his support during the bioreactor cultivation. We also thank Jacob Ewert and Claudia Glück (University of Hohenheim) for their highly appreciated support during the sensory tests. Finally, we thank Veronika Volk (University of Hohenheim) for performing preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Stressler.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stressler, T., Leisibach, D., Lutz-Wahl, S. et al. Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing. Appl Microbiol Biotechnol 100, 5401–5414 (2016). https://doi.org/10.1007/s00253-016-7366-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7366-2

Keywords

Navigation